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INTRODUCTION             

Data envelopment analysis (DEA) is a non-

parametric technique for evaluating and measuring 

the relative efficiency of decision making units 

(DMUs) characterized by multiple inputs and 

multiple outputs. DEA is a linear programming 

technique that computes a comparative ratio of 

weighted outputs to weighted inputs for each unit, 

which is reported as the relative efficiency score. 

The efficiency score is usually expressed as either a 

number between zero and one (0-1) or as a 

percentage (0-100%). A decision-making unit with a 

score equal one becomes the efficient unit. On the 

other hand, a unit with a score less than one is 

deemed inefficient relative to other efficient units 

(Avkiran, 2001, Jablonsky, 2013). 

The name of DEA was due to constructing an 

efficient frontier from efficient units by the model 

that this frontier will cover (envelope) the inefficient 

units (Kazemi and Alimi, 2014). 

DEA has initially been used to investigate the 

relative efficiency of non-for-profit organizations 

and it is quickly spread to profit-making 

organizations. DEA has been successfully applied in 

such diverse settings as schools, universities, 

hospitals, libraries, banks, shops, industries, and 

more recently, whole economic and society systems; 

in which outputs and inputs are always multiple 

(Iddrisu, 2014,  Abd-Aziz et al., 2013). 

DEA is based on the study of Farrell in 1957. 

Farrell’s seminal work was the first to propose the 

concept of technical efficiency, stating that technical 

efficiency is the ability of a firm to obtain maximal 

output for a given set of inputs. Farrell's definition 

of technical efficiency led to the development of 

methods for estimating relative efficiencies of multi-

input multi-output production units (Mohammadi 

and Ranaei, 2011). 

Twenty years after Farrell's seminal work 1957, and 

as responding to the need for satisfactory procedures 

to assess the relative efficiencies of multi-input 

multi-output production units, Charnes et al. (1978) 

put into practice Farrell's view for the first time and 

introduced a powerful methodology as an evaluation 

tool to measure the relative efficiencies of decision 

making units (DMUs) and named it as ''Data 

Envelopment Analysis". Their DEA approach 

applies linear programming techniques to observed 

inputs consumed and output produced by decision-

making units and constructs an efficient production 

frontier based on the best practices. Each DMU's 

efficiency is then measured relative to this frontier. 

Since the advent of DEA seminal paper in 1978, a 

large literature on DEA has developed, focusing 

both on methodological (theoretical) developments 

and practical applications. Moreover; all other 

models are extensions of that approach. 

This paper is organized as follows. The next section 

contains conventional models of DEA. Section 3 

presents a discussion about FDEA including fuzzy 

set theory, fuzzy numbers, fuzzy DEA models, 

interval DEA, and the suggested method to express 
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the data as interval data. In section 4, an application 

based on a real data is presented. Section 5 closes 

with final results and conclusion. 

 

I. CONVENTIONAL MODELS OF DATA 

ENVELOPMENT ANALYSIS 

The models of data envelopment analysis were 

studied by many authors. Over the last decades, the 

field of usage of DEA models has been extensively 

updated. The basic idea for development of DEA 

models is to enable the efficiency measurement in 

non-profit sector where there are no exact financial 

measures. Later, DEA models were applied also in 

the profit sector. Numerous applications have 

caused the development of new methods and 

models, but in this section, for the purpose of 

understanding the basics of DEA, only CCR 

(Charnes, Cooper and Rhodes) BCC (Banker, 

Charns and Cooper) models are presented.  

       

A. The CCR Model 

The DEA model originally proposed by Charnes, 

Cooper, and Rhodes is called the CCR model 

(which is named after the first letters of their 

names). First, their proposed measure of the 

efficiency of any DMU is obtained as the maximum 

of a ratio of weighted outputs to weighted inputs 

subject to the condition that; the similar ratios for 

every DMU be less than or equal to unity. 

They assumed that there are 𝑛 of 𝐷𝑀𝑈𝑆 to be 

evaluated, where every 𝐷𝑀𝑈𝑗  (𝑗 = 1,2, … … , 𝑛) 

consumes varying amounts of 𝑚 different 

inputs 𝑥𝑖𝑗(𝑖 = 1,2, … … , 𝑚) to produce  𝑠 different 

output𝑦𝑟𝑗(𝑟 = 1,2, … … , 𝑠). With decision variables 

outputs weights 𝑢 𝑟(𝑟 = 1,2, … , 𝑠) and inputs 

weights 𝑣𝑖  (𝑖 = 1,2, … , 𝑚)  being selected, the 

mathematical formulation of the method is 

summarized as follows: 

𝑚𝑎𝑥          ℎ0 =
    ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑟0  

∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑖0

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
    ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑟𝑗   

∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑖𝑗

≤ 1  ;  𝑗 = 1,2, … … , 𝑛   

 𝑢𝑟 , 𝑣𝑖 ≥ 0    ;        𝑟 = 1, … , 𝑠 ;     𝑖 = 1, … , 𝑚               
 (1) 

Hence, the fractional CCR model (1) evaluates the 

relative efficiencies of 𝑛 decision making units 

(DMUs), each of them with 𝑚 inputs and 𝑠 outputs 

by maximizing the ratio of ℎ0. 

The fractional programming model (1) can be 

transformed into a linear form as follows: 

            𝑚𝑎𝑥        ℎ0 = ∑ 𝑢𝑟 
𝑠
𝑟=1 𝑦𝑟0  

  𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑖0 = 1                       

       ∑ 𝑢𝑟 
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖 

𝑚
𝑖=1 𝑥𝑖𝑗 ≤ 0  ;         𝑗 = 1, … , 𝑛 

        𝑢𝑟 , 𝑣𝑖 ≥ 0   ;      𝑟 = 1, … , 𝑠 ;   𝑖 = 1, … , 𝑚       

 (2) 

B. The BCC Model 

Banker, Charnes, and Cooper 1984 introduced the 

BCC model (which is named after the first letters of 

their names). This model is an extension of the CCR 

model. The primary difference between the two 

models (CCR and BCC) is the treatment of returns 

to scale. Charnes, Cooper, and Rhodes assumed 

constant returns to scale (CRS) that means; an 

increment (a rise) in inputs results in proportion 

increment in outputs. On the other hand, Banker, 

Charnes, and Cooper assumed variable returns to 

scale (VRS) which means; an increment in inputs 

results in a disproportionate increment in outputs. 

So, the BCC model is more flexible. These two 

radial models can be easily illustrated in the 

following two figures (Fig. 1 and fig. 2) (Tlig, 2013)  

 

 
Fig. 1: Production frontier of the CCR model 

 

 
Fig. 2: Production frontier of the BCC model  

    

The BCC ratio model differs from the CCR ratio 

model (1), by an additional variable as follows: 

𝑚𝑎𝑥          ℎ0 =
    ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑟0 −  𝑐0  

∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑖0

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
    ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑟𝑗 −  𝑐0   

∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑖𝑗

≤ 1 ; 𝑗 = 1, … , 𝑛   

       𝑢𝑟 , 𝑣𝑖 ≥ 0 ;    𝑟 = 1,2, … … , 𝑠 ;    𝑖 = 1,2, … … , 𝑚  
𝑐0     𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

 (3) 

Where  𝑐0  is the new variable that separates scale 

efficiency from technical efficiency in the CCR 

model.  
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The BCC primal linear programming model that 

measures pure technical efficiency is given as 

follows: 

            𝑚𝑎𝑥        ℎ0 = ∑ 𝑢𝑟 
𝑠
𝑟=1 𝑦𝑟0 −  𝑐0   

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑖0 = 1                       

 ∑ 𝑢𝑟 
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖 

𝑚
𝑖=1 𝑥𝑖𝑗 −  𝑐0 ≤ 0  ;    𝑗 = 1, … , 𝑛  

    𝑢𝑟 , 𝑣𝑖 ≥ 0     ;                𝑟 = 1, … , 𝑠 ;       𝑖 = 1, … , 𝑚 

𝑐0     𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

        (4) 

When (𝑐0 = 0), it implies CRS (constant returns to 

scale). If (𝑐0 > 0), it implies DRS (decreasing 

returns to scale), and if (𝑐0 < 0), it implies IRS 

(increasing returns to scale) (Argyrioy and Sifaleras, 

2013) & (Avkiran, 2001). 

 

II. FUZZY DATA ENVELOPMENT 

ANALYSIS 

The traditional data envelopment analysis (DEA) 

models use crisp values and precise input and output 

data to evaluate efficiencies. But, in point of fact, it 

is not always possible to work with certain values 

due to various reasons. One of them is that; in real- 

world problems, the observed values of the input 

and output data are sometimes imprecise or vague. 

Imprecise or vague data may be the result of 

unquantifiable, incomplete and unobtainable 

information. To deal with imprecise data, fuzzy set 

theory has become an effective method to quantify 

imprecise and vague data in DEA models. Another 

reason; in many situations, such as in a 

manufacturing system, a production process or a 

service system, inputs and outputs are volatile and 

complex so that it is difficult to measure them in an 

accurate way. Instead the data can be given as in 

forms of bounded or fuzzy data. Furthermore, the 

data can be represented by linguistic terms, e.g. 

good, medium, or bad. In these cases, fuzzy set 

theory can be a powerful tool to deal with the 

linguistic variables. So, many researchers have 

proposed various fuzzy methods for dealing with the 

imprecise and ambiguous data in DEA (Isabels and 

Uthra, 2012). 

 

A. Fuzzy set theory 

Zadeh (1965) was the first one who introduced the 

concept of fuzzy sets. According to Zadeh, a fuzzy 

set is a class of objects with a continuum of grades 

of membership. Such a set is characterized by a 

membership function which assigns to each object a 

grade of membership ranging between zero and one. 

Fuzzy set algebra developed by Zadeh is the formal 

body of the theory of fuzzy sets that allows the 

treatment of imprecise and vague data in uncertain 

environments.  

Fuzzy set theory is a generalization of classical set 

theory in that the domain of the characteristics 

function is extended from the discrete set {0, 1} to 

the closed real interval [0, 1]. Zadeh (1965) defined 

a fuzzy set as a class of objects with continuum 

grades of membership. 

Mansourirad et al. (2010) showed that; 𝑋 is a space 

of objects and 𝑥 is a generic element of X. A fuzzy 

set, �̃� , in 𝑋 can be defined as: 

�̃�  =  {(𝑥, 𝜇𝐴(𝑥)) | 𝑥 ∈  𝑋}                                    (5) 

Where 𝜇𝐴(𝑥): 𝑋 → 𝑀 is the membership function 

and 𝑀 is the membership space that varies in the 

interval [0, 1]. The closer the value of 𝜇𝐴(𝑥) is to 

one, the greater the membership degree of 𝑋 to �̃�. 

However, if 𝑀 =  {0, 1}, the set 𝐴 is non-fuzzy. A 

fuzzy set �̃� can be defined precisely by associating 

with each object 𝑥 a number between 0 and 1, which 

represents its grade of membership in 𝐴. Thus, 

𝜇𝐴(𝑥) = 1 if 𝑥 is totally in 𝐴, 𝜇𝐴(𝑥) = 0 if 𝑥 is not 

in A, and 0 < 𝜇𝐴(𝑥) < 1if 𝑥 is partly in 𝐴. 

Recently, Fuzzy set theory has been applied to a 

wide range of fields such as management science, 

decision theory, artificial intelligence, computer 

science, expert systems, logic, control theory and 

statistics. 

B. Fuzzy numbers 

A fuzzy number is an extension of a regular number 

in the sense that it does not refer to one single value 

but rather to a connected set of possible values, 

where each possible value has its own weight 

between 0 and 1. This weight is called the 

membership function (Mansourirad et al., 2010). 

There are many different types of fuzzy numbers; 

our attention will be focused on interval fuzzy 

numbers as it will be used in forming the fuzzy 

linear programming models. 

C. Fuzzy Data Envelopment Analysis 

models 

Sengupta (1992) was the first to introduce a fuzzy 

mathematical programming approach in which 

fuzziness was incorporated into DEA by allowing 

both the objective function and the constraints to be 

fuzzy. The author explored the use of fuzzy set 

theory in decision making. In the study, three types 

of fuzzy models (fuzzy mathematical programming, 

fuzzy regression and fuzzy entropy) were presented 

to illustrate the types of decisions and solutions that 

were achievable, when the data are vague and prior 

information is inexact and imprecise. 

 

i. The  Fuzzy  CCR Model  

Assume that there are 𝑛 of 𝐷𝑀𝑈𝑆 to be evaluated, 

where every 𝐷𝑀𝑈𝑗  (𝑗 = 1,2, … … , 𝑛) consumes 

varying amounts of 𝑚 different inputs �̃�𝑖𝑗(𝑖 =

1,2, … … , 𝑚) to produce  𝑠 different outputs 

 �̃�𝑟𝑗(𝑟 = 1,2, … … , 𝑠). Where (  �̃�𝑖𝑗  , �̃�𝑟𝑗) represent, 

respectively, the fuzzy input and fuzzy output of 

the 𝑗th 𝐷𝑀𝑈𝑗  (𝑗 = 1,2, … … , 𝑛)   With decision 

variables outputs weights 𝑢 𝑟 (𝑟 = 1,2, … … , 𝑠) and 

inputs weights 𝑣𝑖  (𝑖 = 1,2, … … , 𝑚) being selected, 

the fractional CCR model with fuzzy data can be 

formulated as follows: 

 

𝑚𝑎𝑥          ℎ0 =
    ∑ 𝑢𝑟 

𝑠
𝑟=1 �̃�𝑟0  

∑ 𝑣𝑖 
𝑚
𝑖=1 �̃�𝑖0
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
    ∑ 𝑢𝑟 

𝑠
𝑟=1 �̃�𝑟𝑗  

∑ 𝑣𝑖 
𝑚
𝑖=1 �̃�𝑖𝑗

≤ 1        ;     𝑗 = 1, … , 𝑛   

𝑢𝑟 , 𝑣𝑖 ≥ 0           ;  𝑟 = 1, … , 𝑠 ;         𝑖 = 1,2, … … , 𝑚  
   (6) 

 

Where "∼" indicate the fuzziness. 

 

The fuzzy fractional programming model (6) can be 

transformed into fuzzy linear programming model. 

The CCR model with fuzzy data (coefficients) can 

be written as: 

            𝑚𝑎𝑥        ℎ0 = ∑ 𝑢𝑟 
𝑠
𝑟=1 �̃�𝑟0  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     ∑ 𝑣𝑖 
𝑚
𝑖=1 �̃�𝑖0 = 1                       

            ∑ 𝑢𝑟 
𝑠
𝑟=1 �̃�𝑟𝑗 − ∑ 𝑣𝑖 

𝑚
𝑖=1 �̃�𝑖𝑗 ≤ 0  ;    𝑗 = 1, … , 𝑛 

          𝑢𝑟 , 𝑣𝑖 ≥ 0             ;      𝑟 = 1, … , 𝑠 ;   𝑖 = 1, … , 𝑚 

   (7) 

ii.   The  Fuzzy BCC Model  

By the same way, the BCC linear programming 

model with fuzzy data is given as follows: 

            𝑚𝑎𝑥        ℎ0 = ∑ 𝑢𝑟 
𝑠
𝑟=1 �̃�𝑟0 − 𝑐0  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     ∑ 𝑣𝑖 
𝑚
𝑖=1 �̃�𝑖0 = 1                       

 ∑ 𝑢𝑟 
𝑠
𝑟=1 �̃�𝑟𝑗 − ∑ 𝑣𝑖 

𝑚
𝑖=1 �̃�𝑖𝑗 − 𝑐0  ≤ 0  ;    𝑗 = 1, … , 𝑛 

          𝑢𝑟 , 𝑣𝑖 ≥ 0             ;      𝑟 = 1, … , 𝑠 ;   𝑖 = 1, … , 𝑚 

  (8) 

Where "∼" indicate the fuzziness. 

The interpretation of constraints of FCCR and 

FBCC models is similar to the crisp CCR and BCC 

models. The difference between the two models 

resides on the manner of resolution. The crisp CCR 

model can be simply solved by a standard LP solver. 

For the FCCR model, the resolution is more difficult 

and requires methods for fuzzy sets (Tlig, 2013). 

   

iii.  The Interval DEA   

As mentioned before, there are many different types 

of fuzzy numbers; our attention will be focused on 

interval fuzzy numbers. In a condition that all inputs 

and outputs are not totally available due to 

uncertainties, these values are only known to lie 

within the upper and lower bounds represented by 

intervals [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈]  and [𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑈] , where 

𝑥𝑖𝑗
𝐿 > 0 and 𝑦𝑟𝑗

𝐿 > 0. In order to deal with such an 

uncertain situation, the following pair of linear 

fractional models has been developed to generate 

the upper and lower bounds of interval efficiency 

for each DMU. Therefore, model (6) can be re-

written as follows: (Wang et. al, 2005) 

𝑚𝑎𝑥          ℎ0
𝑈 =

    ∑ 𝑢𝑟 
𝑠
𝑟=1 𝑦𝑈

𝑟0
  

  ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝐿

𝑖0  
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      
    ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑈

𝑟𝑗
  

  ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝐿

𝑖𝑗   
≤ 1 ;   𝑗 = 1, … , 𝑛   

     𝑢𝑟 , 𝑣𝑖 ≥ 0      ;  𝑟 = 1,2, … … , 𝑠 ;   𝑖 = 1,2, … … , 𝑚  
   (9) 

𝑚𝑎𝑥          ℎ0
𝐿 =

    ∑ 𝑢𝑟 
𝑠
𝑟=1 𝑦𝐿

𝑟0
  

  ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑈

𝑖0  
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    
    ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑈

𝑟𝑗
  

  ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝐿

𝑖𝑗   
≤ 1  ;    𝑗 = 1, … , 𝑛   

            𝑢𝑟 , 𝑣𝑖 ≥ 0        ;     𝑟 = 1, … , 𝑠 ;      𝑖 = 1, … , 𝑚  
   (10) 

The fractional programming models (9) and (10) can 

be transformed into linear programming models as 

follows: 

            𝑚𝑎𝑥        ℎ0
𝑈 = ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑈

𝑟0
  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝐿

𝑖0 = 1                       
     ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑈

𝑟𝑗
− ∑ 𝑣𝑖 

𝑚
𝑖=1 𝑥𝐿

𝑖𝑗 ≤ 0  ;      𝑗 = 1, … , 𝑛  

  𝑢𝑟 , 𝑣𝑖 ≥ 0       ;      𝑟 = 1, … , 𝑠 ;   𝑖 = 1, … , 𝑚     

 (11) 

            𝑚𝑎𝑥        ℎ0
𝐿 = ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝐿

𝑟0
  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     ∑ 𝑣𝑖 
𝑚
𝑖=1 𝑥𝑈

𝑖0 = 1                       
       ∑ 𝑢𝑟 

𝑠
𝑟=1 𝑦𝑈

𝑟𝑗
− ∑ 𝑣𝑖 

𝑚
𝑖=1 𝑥𝐿

𝑖𝑗 ≤ 0  ;    𝑗 = 1, … , 𝑛  

         𝑢𝑟 , 𝑣𝑖 ≥ 0          ;      𝑟 = 1, … , 𝑠 ;       𝑖 = 1, … , 𝑚 

   (12)  

 Where ℎ0
𝑈 stands for the upper bound of the best 

possible relative efficiency of DMU0, and ℎ0
𝐿  stands 

for the lower  bound of the best possible relative 

efficiency of DMU0. 

Demir (2014) suggested solving the two models (11) 

and (12) by changing the crisp data into interval 

data. Upper and lower frontier data were calculated 

by adding and removing standard errors to each 

variable, and so each data was turned into interval 

data. To calculate upper frontier efficacy scores, 

upper frontier values of the output data and lower 

frontier values of the input data were used. When it 

came to the lower frontier efficacy scores, lower 

frontier values of the output data and upper frontier 

values of the input data were used.  The formulas 

are: 

(Upper frontier data) = (Available data) + (Standard 

Error)  

(Lower frontier data) = (Available data) - (Standard 

Error) 

  (13) 

iv.    The suggested Method 

In this study, a statistical interval is suggested to 

express of crisp data as interval data in the form of 

lower and upper bounds as follows: 

Lower bound data =original data - (Standard Error) 

*𝑍𝛼
2⁄  

Upper bound data =original data + (Standard Error) 

*𝑍𝛼
2⁄       

 (14) 

Although Demir (2014) suggested a method to 

change the crisp data into interval data by using 

standard errors of the variables to define the data as 

interval as mentioned before, the statistical 

argument for using this method has not been 

showed.  So, the method of Demir is being 

improved as shown in (14) on the basis of idea of 

making a statistical confidence interval.  

To apply the suggested confidence interval; the data 

should be distributed as a normal distribution. In 

other words, this technique assumes that the 
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variables are normally distributed.  If a 

measurement variable does not fit a normal 

distribution, data transformations should be made. 

Data transformations such as square root, log, and 

inverse are commonly used tools that can serve 

many functions in quantitative analysis of data for 

improving the normality of variables.  

  

III. APPLICATION AND RESULTS 

In order to evaluate the relative efficiency values by 

using classical and interval DEA models, a real data 

set of 25high schools in the 2012-2013 education 

year. The data is taken from Demir (2014). For the 

purpose of efficiency measurement, numbers of the 

students, teachers and classes were described as 

inputs, and Transition to Higher Education 

Examination (YGS), Undergraduate Placement 

Exam (LYS) success (placement) rates, YGS point 

averages, all points of the LYS Maths -Science 

(MS) , Turkish -Maths (TM), and Turkish-Social 

(TS) Sciences were described as outputs (see 

Appendix A). 

To evaluate the relative efficiency values by using 

classical and interval DEA models, several steps are 

made as follows: 
  Calculating the efficiency values of classical DEA models 
(CCR / BCC). 

  Calculating the efficiency values of interval DEA models 
(CCR / BCC) based on the formulas (13) proposed by Demir. 

  Testing whether measurement variables fit a normal 
distribution or not. If not, data transformations should be made as 

mentioned before.   

 Applying the suggested statistical interval (14) based on three 
confidence intervals; 90%, 95%, and 99%.  

For solving data envelopment analysis (DEA) 

models, MaxDEA package has been employed. 

Efficiency values of classical DEA models (CCR / 

BCC) are calculated as shown in table (1). 

 
Table (1):  Calculated efficiency values with classical DEA 

models (CCR / BCC) 
DMU Efficiency scores with 

CCR  model 

Efficiency scores 

with BCC  model 

S1 0.9701 1 

S2 0.4515 1 

S3 1 1 

S4 0.4737 0.5106 

S5 0.3693 0.4067 

S6 0.5488 0.7185 

S7 0.5404 0.5732 

S8 1 1 

S9 0.8642 1 

S10 0.6864 1 

S11 1 1 

S12 0.2179 0.2221 

S13 0.1259 0.1272 

S14 0.2196 0.2203 

S15 0.2727 0.2742 

S16 0.2097 0.2143 

S17 1 1 

S18 0.9395 1 

S19 0.3920 0.3925 

S20 0.4203 0.4483 

S21 0.2379 0.2392 

S22 0.2780 0.2851 

S23 0.6759 0.8265 

S24 0.3620 0.3815 

S25 0.3865 0.3934 

In table (1), according to CCR model results; only 

four units are efficient and the rest of the units are 

deemed inefficient relative to other efficient units. 

While the BCC model is more flexible and allows 

more units to be efficient. So, nine units are efficient 

and the rest of the units are deemed inefficient 

relative to other efficient units. 

Efficiency values of interval DEA models (CCR / 

BCC) based on the formulas (13) are calculated and 

placed on   table (2) for lower frontier efficiency and 

also placed on table (3) for upper bound frontier 

efficiency as follows: 

 
Table (2):  Lower frontier efficiency scores with DEA models 

(CCR / BCC) 
DMU  Lower efficiency values 

with CCR  model 

Lower efficiency values 

with BCC  model 

S1 1 1 

S2 0.5658 1 

S3 1 1 

S4 0.5527 0.5538 

S5 0.4473 0.4635 

S6 0.6709 0.7655 

S7 0.6336 0.6458 

S8 1 1 

S9 0.9774 1 

S10 0.7709 1 

S11 1 1 

S12 0.2751 0.2754 

S13 0.1588 0.1615 

S14 0.2721 0.2737 

S15 0.3587 0.3598 

S16 0.2605 0.2654 

S17 1 1 

S18 0.9754 1 

S19 0.4905 0.4931 

S20 0.5403 0.5481 

S21 0.2922 0.2928 

S22 0.3423 0.3464 

S23 0.7713 0.8672 

S24 0.4358 0.4451 

S25 0.4352 0.4583 

 

In table (2), according to CCR model results; only 

five units are efficient and the rest of the units are 

deemed inefficient relative to other efficient units. 

While in the BCC model, nine units are efficient and 

the rest of the units are deemed inefficient relative to 

other efficient units. 

 

In table (3), according to CCR model results; only 

three units are efficient and the rest of the units are 

deemed inefficient relative to other efficient units. 

While in the BCC model, the results are similar to 

table (2), so nine units are efficient and the rest of 

the units are deemed inefficient relative to other 

efficient units. 

 

To apply the suggested statistical interval (14); the 

data should be distributed as a normal distribution as 

mentioned before. This assumption was examined 

by SPSS program by using Kolmogorov-Smirnov 

test and it is found that all variables are normally 

distributed except the variable of LYS- scores MS.  

This variable can be dealt with by log 

transformation. 
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Table (3):  Upper frontier efficiency scores with DEA models 

(CCR / BCC) 
 DMU  Upper efficiency values 

with CCR  model 

Upper efficiency values 

with BCC  model 

S1 0.7238 1 

S2 0.3199 1 

S3 1 1 

S4 0.3446 0.458 

S5 0.2741 0.3369 

S6 0.4259 0.6481 

S7 0.4359 0.4727 

S8 0.7647 1 

S9 0.5831 1 

S10 0.4943 1 

S11 1 1 

S12 0.1637 0.1641 

S13 0.0899 0.09 

S14 0.156 0.1608 

S15 0.1958 0.2073 

S16 0.1556 0.1558 

S17 1 1 

S18 0.8312 1 

S19 0.3009 0.3025 

S20 0.2512 0.2935 

S21 0.1717 0.178 

S22 0.2071 0.2111 

S23 0.5241 0.7498 

S24 0.2832 0.3033 

S25 0.3004 0.3108 

 

The previous formulas (14) were calculated based 

on three of confidence intervals, and so each data 

was turned into interval data. 

 

Considering 90% confidence interval, efficiency 

values of interval DEA models (CCR / BCC) are 

calculated and placed on   table (4) for lower 

frontier efficiency and table (5) for upper frontier 

efficiency as follows: 

 
Table (4) :  Lower frontier efficiency scores with DEA models 

(CCR / BCC) 
DMU  Lower efficiency values with 

CCR  model 

Lower efficiency values with 

BCC  model 

S1 1 1 

S2 0.6301 1 

S3 1 1 

S4 0.5747 0.5781 

S5 0.4926 0.4951 

S6 0.7358 0.7884 

S7 0.6788 0.681 

S8 1 1 

S9 1 1 

S10 0.8113 1 

S11 1 1 

S12 0.3088 0.3106 

S13 0.1767 0.1824 

S14 0.3076 0.3148 

S15 0.4012 0.4054 

S16 0.2975 0.2976 

S17 1 1 

S18 0.9884 1 

S19 0.5381 0.5448 

S20 0.5954 0.5956 

S21 0.3196 0.3242 

S22 0.3888 0.3916 

S23 0.8102 0.8848 

S24 0.4789 0.4799 

S25 0.4595 0.4935 

In table (4), according to CCR model results; the 

number of efficient units has increased compared 

with the results of Demir in table (2) and the unit 9 

became efficient. While in the BCC model, the 

results are similar to table (2) so, nine units are 

efficient and the rest of the units are deemed 

inefficient relative to other efficient units. 

 

Table (5) :  Upper frontier efficiency scores with DEA models 

(CCR / BCC) 
 DMU  Upper efficiency 

values with CCR  

model 

Upper efficiency 

values with BCC  

model 

S1 0.5359 1 

S2 0.2271 1 

S3 0.9291 1 

S4 0.2501 0.4173 

S5 0.1984 0.2858 

S6 0.3213 0.5799 

S7 0.3374 0.3819 

S8 0.5876 1 

S9 0.3959 1 

S10 0.3574 1 

S11 1 1 

S12 0.118 0.1238 

S13 0.0632 0.0643 

S14 0.1106 0.1178 

S15 0.14 0.1615 

S16 0.1134 0.1168 

S17 1 1 

S18 0.4958 1 

S19 0.2289 0.2327 

S20 0.1846 0.1889 

S21 0.1249 0.1327 

S22 0.1523 0.1543 

S23 0.4268 0.649 

S24 0.2096 0.244 

S25 0.2191 0.2439 

In table (5), according to CCR model results; it is 

found that the number of efficient units has 

decreased compared with the results of Demir in 

table (3) and the unit 3 turned to inefficient unit. 

While in the BCC model, the results are similar to 

table (3) so, nine units are efficient and the rest of 

the units are deemed inefficient relative to other 

efficient units. 

Considering 95% confidence interval, efficiency 

values of interval DEA models (CCR / BCC) are 

calculated and placed on   table (6) for lower 

frontier efficiency and table (7) for upper frontier 

efficiency as follows: 
Table (6) :  Lower frontier efficiency scores with DEA models 

(CCR / BCC) 
DMU  Lower efficiency values 

with CCR  model 

Lower efficiency 

values with BCC  

model 

S1 1 1 

S2 0.6442 1 

S3 1 1 

S4 0.583 0.5888 

S5 0.5087 0.509 

S6 0.7538 0.7978 

S7 0.6953 0.6955 

S8 1 1 

S9 1 1 

S10 0.8269 1 

S11 1 1 

S12 0.3242 0.3262 

S13 0.1833 0.192 

S14 0.3227 0.3328 

S15 0.4194 0.4249 

S16 0.3138 0.3149 

S17 1 1 

S18 0.9931 1 

S19 0.5564 0.5659 

S20 0.6142 0.6149 

S21 0.3292 0.3383 

S22 0.4081 0.4124 

S23 0.8254 0.8917 

S24 0.4942 0.495 

S25 0.4699 0.5088 

In table (6), according to CCR model results; the 

number of efficient units has increased compared 
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with the results of Demir in table (2) and the unit 9 

became efficient. While in the BCC model, the 

results are similar to table (2) so, nine units are 

efficient and the rest of the units are deemed 

inefficient relative to other efficient units. 

 
Table (7) :  Upper frontier efficiency scores with DEA models 

(CCR / BCC) 

DMU  Upper efficiency values 

with CCR  model 

Upper efficiency values 

with BCC  model 

S1 0.4448 1 

S2 0.1839 1 

S3 0.8485 1 

S4 0.2034 0.3957 

S5 0.1609 0.2628 

S6 0.2663 0.5601 

S7 0.2846 0.3465 

S8 0.5233 1 

S9 0.34 1 

S10 0.2988 1 

S11 1 1 

S12 0.0957 0.1041 

S13 0.0503 0.0517 

S14 0.0897 0.0982 

S15 0.1145 0.139 

S16 0.0923 0.0968 

S17 1 1 

S18 0.4471 1 

S19 0.1926 0.1981 

S20 0.1535 0.1606 

S21 0.101 0.1099 

S22 0.1256 0.1269 

S23 0.37 0.5654 

S24 0.1707 0.2165 

S25 0.1746 0.2072 

In table (7), according to CCR model results; it is 

found that the number of efficient units has 

decreased compared with the results in table (3) and 

the unit 3 turned to inefficient unit. While in the 

BCC model, the results are similar to table (3) so, 

nine units are efficient and the rest of the units are 

deemed inefficient relative to other efficient units. 

 
Table (8) :  Lower frontier efficiency scores with DEA models 

(CCR / BCC) 

DMU  Lower efficiency values 

with CCR  model 

Lower efficiency values 

with BCC  model 

S1 1 1 

S2 0.6702 1 

S3 1 1 

S4 0.5975 0.6085 

S5 0.5345 0.5346 

S6 0.7863 0.8144 

S7 0.7192 0.7208 

S8 1 1 

S9 1 1 

S10 0.8538 1 

S11 1 1 

S12 0.3544 0.3554 

S13 0.196 0.2105 

S14 0.3505 0.3661 

S15 0.4523 0.4603 

S16 0.3442 0.3476 

S17 1 1 

S18 1 1 

S19 0.5883 0.6027 

S20 0.6449 0.6485 

S21 0.3472 0.3646 

S22 0.4424 0.4501 

S23 0.8511 0.9032 

S24 0.5197 0.5227 

S25 0.4888 0.5366 

In table (8), according to CCR model results; the 

number of efficient units has increased compared 

with the results of Demir in table (2) and the units 9 

and 18 became efficient. While in the BCC model, 

the results are similar to table (2), so, nine units are 

efficient and the rest of the units are deemed 

inefficient relative to other efficient units. 

 
Table (9) :  Upper frontier efficiency scores with DEA models 

(CCR / BCC) 
DMU  Upper efficiency values 

with CCR  model 

Upper efficiency values 

with BCC  model 

S1 0.2543 1 

S2 0.0985 1 

S3 0.6297 1 

S4 0.1069 0.3472 

S5 0.0857 0.2147 

S6 0.1479 0.5053 

S7 0.1703 0.2815 

S8 0.4214 1 

S9 0.2276 1 

S10 0.1859 1 

S11 1 1 

S12 0.0511 0.0617 

S13 0.0251 0.0273 

S14 0.0486 0.0582 

S15 0.0638 0.0924 

S16 0.049 0.0542 

S17 1 1 

S18 0.3164 1 

S19 0.1141 0.1186 

S20 0.0914 0.1047 

S21 0.0522 0.062 

S22 0.0698 0.0709 

S23 0.2368 0.5133 

S24 0.0913 0.1604 

S25 0.0716 0.1219 

Considering 99% confidence interval, efficiency 

values of interval DEA models (CCR / BCC) are 

calculated and placed on  table (8) for lower frontier 

efficiency and table (9) for upper frontier efficiency 

as follows: 

In table (9), according to CCR model results; it is 

found that the number of efficient units has 

decreased compared with the results in table (3) and 

the unit 3 turned to inefficient unit. While in the 

BCC model, the results are similar to table (3) so, 

nine units are efficient and the rest of the units are 

deemed inefficient relative to other efficient units.  

 

IV.  FINAL RESULTS AND CONCLUSION 

The final results for the efficient units via  classical 

DEA  models and interval DEA models; the model 

proposed by Demir and the suggested approach 

using 90%, 95% and 99% confidence intervals are 

summarized in the following tables (10) the CCR 

model and (11) for the BCC model as follows: 
Table (10):  Efficient units using CCR model 

 

 

Classical 

DEA 

Lower and 

upper frontier 

efficient 

(Demir) 

Lower and 

upper frontier 

efficient 

(90%) 

Lower and 

upper 

frontier 

efficient 

(95%) 

Lower and 

upper frontier 

efficient 

(99%) 

 L 

 

U L U L U L U 

 

S3 

S8 

S11 

S17 

 

S1 

S3 

S8 

S11 

S17 

 

S3 

S11 

S17 

 

 

 

S1 

S3 

S8 

S9 

S11 

S17 

 

 

S11 

S17 

 

S1 

S3 

S8 

S9 

S11 

S17 

 

 

S11 

S17 

 

S1 

S3 

S8 

S9 

S11 

S17 

S18 

 

S11 

S17 

 
Table (11):  Efficient units using BCC model 

 

 

Classical 

Lower and 

upper frontier 

efficient 

Lower and 

upper frontier 

efficient 

Lower and 

upper 

frontier 

Lower and 

upper frontier 

efficient 
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DEA (Demir) (90%) efficient 

(95%) 

(99%) 

 L 

 

U L U L U L U 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

S1 

S2 

S3 

S8 

S9 

S10 

S11 

S17 

S18 

 

The results of the study are collected and shown in 

tables (10) and (11). Table (10) showed the results 

of efficient units in different cases. According to 

these results, units 11 and 17 remained efficient in 

all cases. Another point of view to the lower bound 

frontier efficient; if the confidence interval is 

increased; more units can be efficient compared to 

the results of Demir and classical DEA models.  In 

other words, when the 90% and 95% confidence 

intervals were applied, the unit (9) became efficient 

although it is not efficient in the results of Demir 

and classical DEA models. Also, when the 

confidence interval became larger, namely 99%, 

another unit (18) lies on the efficiency frontier and 

becomes an efficient unit.  

According to the results of BCC model in table (11), 

there is no difference between efficient units in all 

cases and all the results are the same; so nine units, 

namely, S1, S2, S3, S8, S9, S10, S11, S17, and S18 

were identified as the best practice units. 
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Appendix (A) 

 
 

DMUS 

 

INPUTS 

 

OUTPUTS 

DMU Number of teachers Number of students Number of classroom branches YGS-LYS success rates YGS point averages  LYS-score MS  LYS-score TM LYS-score TS 

S1 28 389 16 43.18 397.197 393.739 275.408 245.372 

S2 45 509 26 60 351.484 296.973 288.684 203.346 

S3 19 188 8 73.17 304.615 191.199 285.571 234.108 

S4 46 559 21 48.48 318.434 268.463 256.699 185.058 

S5 47 599 26 51.77 309.683 236.521 263.151 210.963 

S6 33 288 16 59.62 285.805 228.089 265.58 175.905 

S7 24 334 15 32.47 257.519 186.405 214.908 214.787 

S8 13 310 11 47.17 271.478 178.161 234.892 187.212 

S9 14 297 15 41.67 274.841 175.805 230.242 225.325 

S10 22 310 16 56.06 282.584 197.133 233.308 238.603 

S11 17 95 6 52.38 206.133 176.156 206.204 170.492 

S12 53 930 32 21.93 224.725 160.665 205.977 203.182 

S13 115 1272 51 20.45 213.992 170.764 196.905 185.845 

S14 50 960 33 11.15 209.917 177.579 182.54 194.1 

S15 38 650 28 15.66 213.286 182.659 185.22 205.618 

S16 52 782 32 16.67 210.327 162.205 197.349 197.395 

S17 9 121 7 31.43 204.448 165.59 191.659 209.788 

S18 10 190 11 18.75 197.417 168.721 172.538 218.994 

S19 24 355 18 20.79 208.82 158.187 189.875 200.079 

S20 23 460 23 27 219.623 153.63 205.83 199.751 

S21 58 770 28 11.48 196.202 176.865 182.087 190.464 

S22 36 507 24 21.05 201.578 161.343 190.665 189.435 

S23 19 188 12 17.02 180.082 171.72 173.274 222.271 

S24 44 520 23 41 285.701 193.914 258.752 179.623 

S25 96 475 17 43.06 229.314 137.388 201.315 193.933 

 


