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INTRODUCTION 

The global impact of the Covid-19 pandemic has had 

devastating consequences on public health and well-being. 
Effectively identifying and isolating individuals affected by the 

virus has become a critical challenge. In the field of clinical 

medicine, significant progress has been made through the 
utilization of CT imaging for Covid-19 detection. CT scans have 

proven to be valuable in identifying anomalies that indicate the 

presence of the infection and provide insights into the severity of 
the illness, enabling informed decision-making (Suppawittaya et 

al., 2020; Tabish, 2020). 

 
In recent times, various deep learning techniques have emerged 

as promising approaches for identifying Covid-19 cases. 
However, these techniques face a significant obstacle in 

achieving high classification accuracy due to the limited 

availability of training data and annotations. Furthermore, the 
inherent limitations of CT scans, such as poor contrast, present 

challenges for deep learning model systems. Ambiguous and 

imprecise information, particularly in pixel regions near 
boundaries and images associated with Covid-19 cases, can be 

difficult for these systems to comprehend. 

Addressing the challenges associated with accuracy and 
reliability in deep learning-based classification systems for 

Covid-19 detection is of utmost importance. To overcome the 

limitations posed by CT scans and improve the performance of 
these systems in accurately identifying and diagnosing Covid-19 

cases, several advancements are necessary. These include 

improvements in data availability, annotation, and image 
interpretation techniques. 

 

In our research, we recognize and appreciate the invaluable 
contribution of the research community's open-source Covid-19 

dataset. This dataset serves as a crucial resource for training and 

evaluation, fostering collaboration and progress in the global 
fight against the pandemic. To develop a robust and accurate 

classification system for Covid-19 cases, we aim to leverage the 

power of deep learning techniques, belief functions, and semi-

supervised learning. By combining these approaches, we strive 

to enhance the capabilities of healthcare professionals in 

effectively identifying and managing the disease. Ultimately, 
this will lead to improved outcomes and a greater ability to 

control the spread of the virus. It is important to acknowledge 

the relevant studies that have contributed to the field, such as 
(Chiroma et al., 2020; Elaziz et al., 2020; Roberts et al., 2021). 

Their research has provided valuable insights and paved the way 

for advancements in Covid-19 classification systems. 
 

Artificial neural networks (ANN) have emerged as a valuable 

tool in various fields such as image identification(Li, 2022), 
speech recognition(Oruh et al., 2022), financial forecasting 

(Abubakar & Sabri, 2022; Hamza & Sabri, 2022), Insurance 
(Abubakar & Sabri, 2023), machine translation(Pérez-Ortiz et 

al., 2022), and medical diagnosis (Akbarian et al., 2023). Their 

fault-tolerant properties make them particularly well-suited for 
these applications. Machine learning approaches, including 

ANN, offer a significant advantage in processing complex data 

inputs. One of the key strengths of ANN is its ability to learn 
from sample datasets, enabling it to adapt and improve over 

time. ANN is commonly used for optimization, forecasting, and 

random function approximation tasks. This is because these 
networks aim to replicate the capabilities of the human brain and 

nervous system, which makes them suitable for handling 

complex and nonlinear data patterns.  
 

In recent times, ANN has gained prominence in the field of 

machine learning algorithms (MLA), serving as a versatile tool 
for various applications across different domains. Its ability to 

process and analyze large datasets, extract meaningful patterns, 

and make accurate predictions has made it a valuable asset in 
numerous areas of research and industry  (El-Kady et al., 2023; 

Kaddoura et al., 2022; Oruganti et al., 2023). ANN has also 

found applications in medical research and healthcare. It has 
been utilized in disease diagnosis, prediction, and detection by 

analyzing the effects on patient development (Abubakar & Idris, 

2023; Ogundokun et al., 2022; Sawhney et al., 2023). For 
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instance, ANN has been employed in predicting fibrosis and 

cirrhosis, two conditions affecting the liver. By analyzing 

relevant patient data, such as medical history, genetic factors, 

and test results, ANN can provide insights into the likelihood of 

fibrosis or cirrhosis development(Ghazal et al., 2022; Sinha et 
al., 2022; Yip et al., 2023). 

 

Additionally, ANN has been valuable in predicting the response 
to therapy in patients with hepatitis. By analyzing various 

factors such as patient demographics, viral load, treatment 

history, and genetic markers, ANN can help identify patients 
who are likely to respond positively to specific therapies. This 

information can aid healthcare providers in designing 

personalized treatment plans and optimizing patient outcomes. 
The use of ANN in medical approaches holds promise for 

improving disease management, enhancing diagnostic accuracy, 

and enabling targeted treatment strategies. By leveraging the 
capabilities of ANN, researchers and healthcare professionals 

can gain deeper insights into complex diseases, leading to more 

effective interventions and better patient care (Ibrahim et al., 
2005; K et al., 2018; J. Tang et al., 2019; Vijayarani et al., 

2015).   

 
A study in (Shahid et al., 2019) discusses uses and applications 

of ANN the health care industry for diseases diagnostics 

problems. According to the study in the recent time, ANN 
model framework has increasingly being utilized to influence 

various decision making health care management. The review 
analyzes major aspects and drivers of ANN market acceptance 

in order to guide future use of this technology. Similarly, ANN 

has been use in artificial intelligence techniques (AI) and 
various algorithms modelling used in a variety of industries, 

various purposes including self-driving automobiles, face 

recognition, and disease detection and or diagnosis in  health 
care. The study discovered that artificial intelligence is used to 

address many real-world conundrums. The proposed algorithm's 

main goal is to accurately forecast misclassified malignant 
tumours based a ANN model framework was proposed in 

(Suresh et al., 2020). ANN has also been use in prediction as 

presented in a study published in (Zhu et al., 2021).  It studied 
the protein degradation and quality variations in dry-cured ham 

processing, and then developed using back propagation-artificial 

neural networks (BP-ANN) models. The results revealed the a 
high potentially of the BP-ANN in predicting several quality 

characteristics.  

 
In the work of (Alwan & Abualkishik, 2021) an ANN model 

framework demonstrated the functional capability of identifying 

and classifying PV defects.  A deep convolutional neural 
networks (DCNN) model was proposed  in (D. Tang et al., 

2021). The purpose was in reducing the association between 

endoscopists' endurance of effort and diagnostic accuracy. An 
AI-assisted system was developed and proved to be effective for 

novice endoscopists to obtain diagnostic performance 

comparable to specialists. A study (Dinaharan et al., 2022) 
describes the use of an ANN to estimate the wear rate of surface 

composites manufactured utilizing a solid-state technology. 

With the help of observed microstructures, the projected patterns 
were explained and the influence of the relevant elements was 

studied. The B4C-reinforced surface composite had a decreased 

wear rate. A computational model was developed in  (Abubakar 
et al., 2022) based on  Hopfield neural network (HNN) and 

satisfiability problem. The study utilized Ants Colony 

Optimzation Algorithm (ACO) to optimize the learning process 
of HNN for better classification problem of agricultural soil 

fertility data set (ASFDS).  

 
To enhance model classification performance, a unique 

approach was devised by merging Random maximum kSAT 

with HNN, resulting in a novel logical rule  (Abubakar, H., & 
Shafiq, 2022). In another investigation, ANN was combined 

with a novel election algorithm to expedite the training and 

testing stages of the model, aiming to improve classification 
accuracy (Abubakar, 2022). The objective of these studies was 

to integrate the optimization capabilities of Hopfield neural 

network (HNN) with random maximum kSatisfiability (MAX-

RANkSAT), achieving an optimal representation in the process. 

By leveraging the strengths of these different techniques, the 

researchers aimed to enhance the performance and efficiency of 

the classification model. 

 
In recent data mining studies, various artificial neural network 

models have emerged, including HNN, FFNN, DBFNN, KNN, 

CNN, and other machine learning (ML) tools, which facilitate 
logic mining (LM) through the extraction of knowledge 

(Alzaeemi & Sathasivam, 2021). These ANN models have 

found extensive applications in artificial intelligence (AI) and 
machine learning (ML) fields, particularly in data mining for 

diverse areas such as medical science, engineering, and industry 

(Alzaeemi & Sathasivam, 2021). Logic mining plays a pivotal 
role in extracting meaningful information from databases or 

datasets, and it has been demonstrated that knowledge can be 

effectively represented in logical or symbolic forms (Sathasivam 
& Wan Abdullah, 2011).  

 

The field of data mining has witnessed the emergence of several 
artificial neural network (ANN) models, including HNN, FFNN, 

DBFNN, KNN, CNN, and other machine learning (ML) tools. 

These models have played a crucial role in logic mining (LM) 
by enabling knowledge extraction  1 . Their wide-ranging 

applications in AI and ML have significantly impacted data 

mining across various domains such as medical science, 
engineering, and industry (Abubakar, H., & Shafiq, 2022; 

Abubakar et al., 2022; Alzaeemi & Sathasivam, 2021). 
 

The extraction of meaningful information from databases or 

datasets, known as logic mining, is facilitated by ANN models 
that effectively represent knowledge in logical or symbolic form 

(Sathasivam & Wan Abdullah, 2011). Among these models, 

Hopfield Neural Networks (HNNs) have demonstrated their 
efficacy in logic mining tasks. By employing recurrent neural 

network principles, HNNs can model complex relationships and 

dependencies within data, making them suitable for extracting 
logical relationships (Alzaeemi & Sathasivam, 2021). 

 

Another widely used ANN model in logic mining is the 
Feedforward Neural Network (FFNN), which comprises 

interconnected layers of nodes. FFNNs excel in learning 

intricate mappings between input and output data, enabling the 
extraction of logical rules and patterns from datasets (Alzaeemi 

& Sathasivam, 2021). 

 
Deep Belief Neural Networks (DBFNNs) have also garnered 

attention in logic mining research. DBFNNs employ 

unsupervised learning to pretrain multiple layers of neurons, 
followed by supervised fine-tuning. This hierarchical learning 

approach allows DBFNNs to capture complex patterns and 

representations, making them well-suited for logic mining with 
large and intricate datasets(Alzaeemi & Sathasivam, 2021). 

 

In addition to ANN models, other machine learning tools like K-
nearest neighbors (KNN) and convolutional neural networks 

(CNN) have been employed in logic mining. KNN algorithms 

effectively identify patterns and similarities in data, making 
them valuable for classification and clustering tasks in logic 

mining. CNNs, on the other hand, have revolutionized image 

processing and analysis by automatically learning hierarchical 
features from input data, thereby enhancing logic mining tasks 

(Sathasivam, S.; Abdullah, 2011)(Bukov et al., 

2018)(Hamadneh et al., 2012)involving visual or spatial data 
(Alzubaidi et al., 2021). 

 

The integration of artificial neural networks, including HNN, 
FFNN, DBFNN, KNN, CNN, and other machine learning tools, 

has significantly advanced logic mining in various domains. 

These ANN models facilitate the extraction of meaningful 
knowledge from databases or datasets, enhancing decision-

making and providing valuable insights. Logic mining, with its 
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representation of knowledge in logical or symbolic forms, 

further augments the applicability of ANN models. Ongoing 

research efforts continue to explore and refine the capabilities of 

ANNs in logic mining, paving the way for extracting valuable 

insights from complex data(Khosravi Babadi, 2023). 
 

 

In order to drive progress in the field of data mining, experts 
from diverse disciplines such as artificial neural networks, 

mathematics, artificial intelligence, machine learning, and 

statistics come together to forge innovative data mining 
techniques firmly rooted in logical principles. This collaborative 

effort aims to push the boundaries of knowledge and empower 

researchers and practitioners to extract valuable insights from 
complex datasets. 

 

By combining the expertise and perspectives of these different 
disciplines, researchers can harness the power of artificial neural 

networks to uncover patterns, relationships, and trends within 

data. The mathematical foundations and logical principles serve 
as the guiding framework for the development of sophisticated 

data mining methodologies that are both effective and reliable. 

 
The integration of artificial intelligence and machine learning 

techniques further enriches the data mining process by enabling 

automated decision-making, predictive modeling, and pattern 
recognition. Statistical methods provide a robust foundation for 

analyzing data, validating results, and quantifying the 
significance of findings. 

 

This collaborative approach not only enhances the effectiveness 
and efficiency of data mining techniques but also fosters 

interdisciplinary knowledge exchange and innovation. By 

leveraging the strengths of each discipline and embracing logical 
principles, researchers can unlock the full potential of data 

mining and drive advancements in various fields, including 

healthcare, finance, marketing, and more.. This study 
specifically focuses on enhancing data mining methods by 

integrating Random kSatisfiability (RANkSAT) propositional 

logic into a comprehensive model tailored for real-world 
applications. The model of choice is the Artificial Neural 

Network (ANN), which is renowned for its structured approach 

involving training and testing phases. ANNs have demonstrated 
their effectiveness in pattern recognition and extracting valuable 

insights for solving practical problems. 

 
By incorporating RANkSAT logic into the ANN model, the 

researchers aim to augment its data mining capabilities. This 

logical framework provides a robust basis for addressing 
complex real-life scenarios. The combination of ANN and 

RANkSAT holds tremendous potential for improving the 

efficiency and accuracy of data mining processes, enabling more 
effective pattern recognition and information extraction in real-

world applications. 

 
Hence, the aim of this research is to enhance the capabilities of 

Artificial Neural Networks (ANNs) by integrating a recurrent 

Hopfield Neural Network (HNN), enabling the representation of 
logical rules within neural networks and facilitating optimal 

classifications for real-world problems. The utilization of 

Random kSatisfiability (RANkSAT) based on propositional 
logic is proposed as a suitable symbolic approach for mapping 

logical rules within neural networks. This approach simplifies 

the complexity of discovering relationships between variables 
by focusing on a maximum of three literals per sentence, making 

it beneficial for the classification of real-world problems. By 

combining ANNs and logical reasoning methods, data mining 
techniques become more effective, facilitating better pattern 

recognition and information extraction in practical applications. 

 
In this study, a novel approach called Random k Satisfiability-

based Reverse Analysis (RANkSATRA) is introduced to extract 

logical information from the COVID-19 Surveillance Data Set 
(CSDS). Previous studies have explored different perspectives 

on describing real data from CSDS in logical form, highlighting 

the utility of various HNN models for interpreting logical rules. 

However, there has been a gap in bridging the RANkSAT 

logical representation with the Hopfield neural network for 

COVID-19 classification. Addressing this gap is crucial as the 

artificial neural network algorithm can effectively handle the 

variations and randomness in COVID-19 analysis, offering a 
larger search space. Thus, this research makes the following 

contributions: 

(a) Intelligent organization of the CSDS based on RANkSAT 
logical expressions. 

(b) Introduction of the RANkSATRA logical rule as the primary 

approach to uncover hidden knowledge within the CSDS dataset 
and understand the relationships between its components. 

(c) Evaluation of the effectiveness and accuracy of three 

variations of the proposed RANkSATRA logical representations 
for knowledge extraction from the CSDS using different 

numbers of clauses (NC). 

 
To evaluate the effectiveness of the proposed approach and the 

utilization of logical rules within the Hopfield Neural Network 

(HNN) for knowledge extraction from the COVID-19 
Surveillance Data Set (CSDS), performance metrics will be 

employed. The methodology of the HNN-RANkSATRA model 

for extracting logic from the CSDS dataset will be explained, 
highlighting its superior performance in the training stage and 

successful interpretation of real-life datasets to identify key 

factors influencing optimization problems. 
 

The study is structured as follows: Section 2 provides a 
description of the materials and methods employed, including 

Random kSatisfiability Logic, the Hopfield Neural Network 

(HNN), and the Random kSatisfiability-Based Reverse Analysis 
Method (RANkSATRA). In Section 3, the implementation 

process for classifying the COVID-19 dataset is outlined. The 

model simulations and experimental setup are detailed in 
Section 4, while Section 5 presents the performance evaluation 

metrics. Results and discussions are provided in Section 6, 

followed by a section on future work and overall conclusions to 
conclude the study. 

 

RESEARCH METHODS 
In this section, we will outline the research methodologies 

utilized in this study, which can be classified into five distinct 

types based on their specific approaches. These methodologies 
encompass Random kSatisfiability (RANkSAT), the framework 

of the Hopfield Neural Network (HNN) model, the Reverse 

Analysis method based on Random kSatisfiability 
(RANkSATRA), the method for conducting experimental 

simulations of the model, and the approach for evaluating the 

performance of the model. 
 

Random kSatisfiability (RANkSAT) 
Propositional logic encompasses the concept of Satisfiability 
(SAT), which involves logical rules consisting of sentences 

containing literals or variables. In contrast, Random 

kSatisfiability (RANkSAT) is a type of Boolean logic model 
that does not follow a systematic approach and instead 

incorporates a random number of clauses (NC) or literals 

(including negated literals) within each sentence. The 
application of non-systematic Boolean Satisfiability logic, 

specifically RANkSAT, has proven to be effective in 

representing simulated scenarios (Sathasivam et al., 2020). 
 

In the context of Random kSatisfiability (RANkSAT), the 

process begins with a SAT where a random truth assignment is 
initially made. Then, a literal from an unsatisfied clause is 

randomly selected and set to true until that particular clause is 

satisfied. However, so far, no research has investigated the 
application of this non-systematic approach of Random 

kSatisfiability within discrete Hopfield Neural Networks (HNN) 

for solving classification problems with real-world datasets. The 
formulation of RANkSAT involves crucial specifications, which 

are described as follows: 

 
i. A collection of attributes in form of 

variables  1 2,  , , nx x x  in a clause  iC . Where 
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1,2,3,...,i n  which comprised of a variable  x  and 

or its negation  x  

ii. In this study, 3 variables are randomly chosen from the 

collection of attributes of n  variables with equal 

chances of selecting a variable or its negation in each the 

clause. 

iii. Each attributes selected i.e 
i ix or x  in 

iC  is 

connected by a conjunction ( )  and or disjunction ( ) . 

In this study, the proposed logical rule RANkSAT, employed 

bipolar repressentation in the form 1 or -1 such 

that  1, 1ix    describes  the notion of TRUE or otherwise 

respectively in RANkSAT logical rule (Abubakar et al., 2022; 

Cordeiro, 2022; Medina et al., 2004). The general formulation 

3RAN SAT
F  is represented in Equation (1) as follows. 

              
   2 1(3)

0 0 0

t n m

RANkSAT i i i
i i i

F C C C
  

                          (1) 

 

where  , , 1,2,..t n m k , , , 0t n m  . The clause 

3RAN SAT
F  is defined as a random 3-SAT which consists of a 

clause 
( )k

i
C described in Equation (2).   as follows. 

             

 

 

 

, 3

, 2

, 1

i i i

k

i i i

i

W Q A k

C W Q k

M k

   


  




                   (2) 

 

where ,i iW W , ,i iQ Q , ,i iA A  and ,i iM M   in 

Equation (2) represent literals and their negation respectively 

and the first order logic is designated by
 1

iC  , 
 2

iC is the 

second-order logical clauses and we  denoted the third  order 

logical clause by 
 3

iC .  

 
This study contains a Conjunctive Normal Form (CNF) formula 

rF in which all clauses are chosen uniformly, independently, 

and without replacement 2r
m n

v

 
 
 

 non-trivial clauses of the 

length r . Note that, iA exists in the
 k

iC , if the 
 k

iC  

contains either iA  or negation  iAØ .  The mapping of 

   1,1rV F    is called logical mapping. The Boolean 

value for the mapping is expressed as 1 (TRUE) and -1 

(FALSE). In theory, the example of RANkSAT formula for 

3k   is given as. 

         

   3 1 2 3 1 2 1RAN SATF W W W Q Q M                 (3) 

According to Equation (3),
RANkSATF  comprises of equation (4)-

(6) as follows. 

                   
   3

1 2 3iC W W W                                  (4) 

                     
   2

2 1 2C Q Q                                         (5) 

                             
 1

1 1C M                                                         (6) 

Therefore, the outcome of Equation (3) is satisfied if Equations 

(4)-(6) are satisfied. i.e  

   
     3 2 1

1 2 1iC C C                                                       (7) 

This research aims to integrate RANkSAT into the proposed 
Hopfield Neural Network (HNN) model using the reverse 

analysis technique for COVID-19 data classification. By 

incorporating the RANkSAT logical rule, the modified networks 
will be able to reveal the accurate patterns and behaviors of the 

utilized datasets. 

 

Hopfield Neural Network (HNN) 

A Hopfield network is a neural network architecture 

characterized by a single layer of interconnected recurrent 
neurons. These neurons are fully connected, allowing for 

information to flow bidirectionally within the network. By 

establishing a connection between the cost function and the 
energy function, the Hopfield network can effectively address 

optimization problems involving tightly interconnected neurons. 

This can be used to optimize a given optimization problem. If 
there are two neurons i and j, then a symmetric connection 

weight ijT  exists between them. "The Hopfield network is an 

RNN with symmetric links." Other RNNs that are not Hopfield 
networks include fully reconnect, recursive, Elman, Jordan, and 

others. The Hopfield network employs two types of operations 

in its associative memory: auto-association and hetero-
association. Auto-association involves connecting a vector with 

itself in the memory storage, while hetero-association involves 

linking two distinct vectors in the memory storage. These 
operations play a crucial role in addressing a wide range of 

optimization and combinatorial tasks. In the Hopfield neural 

network (HNN), organized neuronal states are represented by 
Ising variables. The discrete HNN utilizes neurons in a bipolar 

form of representation, where each neuron is assigned a value of 

either 1 or -1. (Uykan, 2020)- (Sathasivam, 2009). Equation (4) 
depicts a basic summary of neuron state firing in HNN. 

                 
1 ,  

1 ,

ij j
j

i

if T S
S

Otherwise


 



                     (8) 

where ijT  is the synaptic weight vector from the neuron j  to 

neuron i . The state of neurons j  and d  is the is  predefined  

setup (threshold) values jS . The value of 0  has been 

specified in  to ensure that the energy of the network decreases, 

the connections in the Hopfield network are designed in such a 
way that there are no self-connections. In other words, a neuron 

in the Hopfield network is not directly connected to itself. This 

design feature helps in optimizing the performance of the 
network and ensuring effective information processing.  

        
     3 3 3

ijk kij kjiT T T                                    (9) 

              2 2

ji ijT T                                    (10) 

                             
   1 1

i jT T                                                (11) 

          0jj iiT T                                       (12) 

As a result, HNN has architecturally symmetrical elements. The 

HNN model features detailed elements akin to the Ising model 
of magnetism . The spin points obey in the direction of a 

magnetic field, as the neuron state is referred to in bipolar 

representation  1, 1iS   . This causes each neuron to flip 

until the equilibrium energy is reached. This leads each neuron 

to flip until balance is restored. Thus, it follows the dynamics  

sgn ( )i iS h t   where is the local field ( )ih  of the neuron 

interaction. 

 The total field induced by each neuron is provided as in 
Equation (13) as follows. 
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N N N

i ijk j k ij j i

k j j

h T S S T S T                         (13) 

The role of the local field in the Hopfield Neural Network 

(HNN) is to analyze the final state of neurons and generate all 

possible logic induced by Random kSatisfiability (RANkSAT) 
from this state. The HNN network is known for its ability to 

consistently converge to stable states (Hopfield, 1982), making 

it a significant characteristic of the model. In the context of 
RANkSAT logic programming, the Lyapunov energy function 

(LEF) within the HNN is utilized, and its representation is 

presented as follows: 
               

   
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)

1 1

1 1

3 2RANkSAT

N N N m m m

F ji

i i j i

i j k i jijijk

i j k k i k j i j

H ST TT S S SS S

      

      
                    (14) 

The energy function of the HNN model is especially critical 
since it will decide the interoperability of the network. The 

equation's output will be checked to see if it is global or not. 

When the generated neurons' states approached global minimum 
energy, the network would create the appropriate response. 

There has been little work done to merge HNN and RANkSAT 

as a single computational network.. 
 

Random kSatisfiability Reverse Analysis (RANkSATRA) 

Reverse Analysis plays a vital role in the field of logic mining 
by extracting valuable logical rules from given datasets. Logic 

mining has become a significant area in data mining, enabling 

the representation of information in a logical format and 
facilitating the extraction of meaningful knowledge. The reverse 

analysis technique, which is based on the horn clause, has been 

utilized to extract valuable insights from real-world data. In this 
study, we propose a method called Random kSatisfiability 

enhanced Reverse Analysis (RANkSATRA) to extract the 

optimal RANkSATRA logical rule that explains the behavior of 
COVID-19 datasets. 

 

RANkSATRA is a logic extraction method that leverages the 
structure of the HNN-RANkSAT model to extract valuable 

logical rules from the COVID-19 dataset. The flexible and 
convenient nature of RANkSAT makes it suitable for describing 

and analyzing datasets with non-systematic behavior. The 

RANkSATRA approach allows for the derivation of an ideal 
logic representation of the relationship between attributes in the 

COVID-19 dataset, which is beneficial for classification and 

estimation purposes. By uncovering hidden information within 
the dataset, the RANkSATRA approach enhances our hybrid 

HNN model and contributes to the overall data mining 

framework. 
 

In the RANkSAT clauses, each attribute is translated into atoms, 

enabling the construction of the RANkSAT logical rule. By 
considering seven selected attributes from the dataset, the 

logical rule is formulated.  

Logic mining, a technique based on the principles of logic 
programming theory, is employed to extract hidden knowledge 

from the data set. Specifically, our HNN-RANkSATRA model 

implements RAN3SATRA as a logic mining technique to 
establish the relationship of entries within the CSDS. The 

RANkSATRA ( 3)k £ may be able to disclose the level of 

connectivity between three neurons by gaining the synaptic 

weight between them. 

In this study, we consider n attributes extracted from CSDS 

dataset [ ]1 2, ,...i ns s s sÎ .  Where all entries are being 

represented in bipolar states i.e 1 or -1. Since this chapter 

considers 
3RAN SATF , the arrangement of each 

mS  consists of 

, ,i j kS S S  where i j k  . For 
mS  those leads 

1
RANkSAT

learnP  have been presented as follows 

 

   max[ ( )]max[ ( )] max[ ( )]ji k
n sn s n s

m i j kS S S S   (15) 
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Based on the value of 
mS  obtained in Equation (15), we can 

formulate
RANkSAT

bestP : 

  1RANkSAT

learn k

m mP S                                                (17) 

For example, we will choose  

1 1 2 3Y S S S                                    (18)

   

If  the  conditions in Equation (19)-(21) holds, then
RANkSAT

bestP will be 

inserted in the HNN, and extract the states of  neurons  corresponding to 

3

0best

RAN SAT
F

E  .   

1max[ ( )]

1 1

n SS S                                                  (19) 

   2max[ ( )]

2 2

n SS S                                           (20) 

                          3max[ ( )]

3 3

n SS S                                        (21) 

The corresponding values of 
ijkT  is computed by equating Equation (3) 

to Equation (14). During the testing process, we obtained the induced 

logic rule, B

iS , according to Equation (13). Subsequently, B

iP which is 

the induced logic rule in HNN, will be built according to logical rule 

given in Equation (2). Finally, induced logic rule chosen is obtained 
according to  Equation (22) basad on the CSDS Training data. 

          
B test

i iP P                                                     (22) 

The logical rule “RANkSATRA” is used in this experiment to discover 
the relationship between the data set. In learning CSDS, detected or not 

detected would be turned into bipolar representations 1,-1. In 

RANkSATRA, every objective would be encoded by neurons. As a 
result, this data set would consider a maximum of seven neurons. CSDS 

entries will be used to identify each neurons state.   

 

RANkSATRA Experimental setup  

To assess the effectiveness and performance of the Random 

kSatisfiability reverse analysis (RANkSATRA) in controlling the 
learning process of the Hopfield neural network (HNN) for the 

classification of the COVID-19 Surveillance Data Set (CSDS), a 

comprehensive simulation was conducted. The dataset was divided into 
two subsets, with 60% of the data allocated for the learning phase and 

the remaining 40% for testing purposes.  

 
The simulation was performed using Microsoft Visual C++ applications 

on a Windows 8.1 platform featuring a 64-bit system, a CPU with a 

clock speed of 4.40 GHz, 4GB of RAM, and a 400 GB hard drive. A 
dedicated timeframe of 24 hours of CPU time was assigned for both the 

learning and testing phases. This allocation ensured that the model had 

sufficient computational resources to complete the necessary tasks. If the 
model exceeded the recommended processor time limit, it would 

indicate that the HNN-based RANkSATRA approach faced challenges 

in effectively training with real-life data.  
 

The primary objective of the simulation was to evaluate the performance 

of the proposed approach within the constraints of the provided 
computational resources. This assessment would provide valuable 

insights into the model's efficiency and suitability for practical 
implementation in real-world scenarios. 

 

Regarding the incorporation of the Satisfiability logical rule into the 
HNN as a single model, previous works by Sathasivam and Abdullah  

utilized HORNSAT for logic mining, while the RANMAXkSAT model 

proposed by (Abubakar, 2020) and the RANkSAT model proposed by  
(Abubakar & Sathasivam, 2020)were considered as existing logic 

mining techniques in the research. These models provided a foundation 



Abubakar and Yusuf. J. Basic Appl. Res. Biomed. 9(1): 17-25 

 

22 
 

for exploring the implementation of HNN-RANkSATRA for CSDS 

classification. 

 

Implementation of CSDS 

This section focuses on the classification of the COVID-19 
Surveillance Data Set (CSDS) using three distinct techniques: 

RANkSATRA, HORNkSATRA, and RANMAXkSATRA. The 

CSDS dataset utilized in this study was obtained from the UCI 
machine learning repository, which is recognized as a reliable 

and comprehensive source of data for various applications.  

The original CSDS dataset comprises seven instances with nine 
attributes, consisting of two classes: "detected" and "not 

detected." To identify the most relevant and influential features 

within the COVID-19 dataset, feature selection methods were 
employed. The primary objective of this experiment is to 

thoroughly analyze the characteristics and properties of the 

CSDS dataset.  
 

Performance Evaluation metrics 

In this section, a comprehensive set of simulated tests was 
carried out to evaluate the performance of our proposed logical 

rule model under different clause configurations. These tests 

aimed to assess the effectiveness of our SATRA model in 
extracting significant logical rules from the COVID-19 

Surveillance Data Set (CSDS), utilizing various performance 

indicators. 
To evaluate the performance of the Hopfield Neural Network 

(HNN) models during the training phase, specific metrics 
introduced in this study were employed. These metrics served as 

quantitative measures to assess the alignment between the 

retrieved neuron state and the optimal categorization of the 
CSDS. This evaluation provided insights into the effectiveness 

of the RANkSAT representation in controlling the network 

during the learning phase. 
 

To quantify the effectiveness of the RANkSAT representation, 

we utilized a fitness equation that was specifically designed for 
this purpose. The fitness equation played a crucial role in 

determining how well the network adapted and learned from the 

CSDS dataset, thereby evaluating the model's performance. 
Through these simulated tests and performance evaluations, we 

aimed to gain a comprehensive understanding of how our 

proposed logical rule model, integrated with the HNN, 
performed under varying conditions. The results obtained from 

these evaluations would provide valuable insights into the 

model's effectiveness and its ability to extract relevant logical 
rules from real-world datasets such as the CSDS.  

1

NC

k k

k

f C


                                                (23) 

where NC is defined as the number of clauses for any given 
B

kP .  

kC  is  defined according to Equation as  follows. 
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The measurements are assessed by considering accuracy 

and error accumulation, which indicate the complexity of the 
network in relation to the number of neurons. This evaluation is 

conducted using the following formula. 

max

1

1
_

n

k

i

TRANING MAE f f
n



     (25)

   
     

2
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1

1
_ ( )

n
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i

TRAINMING RMSE f f
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

        (26)    

where maxf
 
and kf   are the output value and target output 

value respectively, and n  is a number of the iterations. 

TRAINING_BIC ( )nIn MSE   (27) 

where n  represents the number of simulation iterations, and 

MSE represents the measurement used to calculate BIC. 
Consequently, the MSE formula is provided as follows: 

           

2
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1

1
_ ( )

n

k

i

TRAINING MSE f f
n



                  (28) 

The following is use in calculating the model accuracy in CSDS 

classification.  

_ 100%

test

Correct
induced

P

P
TRAINMING ACCURACY

N
     (29)

          

 

The performance of the HNN on the proposed logical rule is 

presented in Table 3. 
 

RESULT AND DISCUSSION 

In this study, we conduct a comparison of the simulated program 
for neurons in the HNN-RANkSATRA model with two existing 

models, namely HNN-HORNkSAT (Sathasivam, S.; Abdullah, 

2011) and RANMAXkSAT(Abubakar et al., 2020), using 
various performance metrics. These metrics include the 

Bayesian information criterion (BIC), mean absolute error 

(MAE), root mean square error (RMSE), CPU time, and 
accuracy in classifying the COVID-19 Surveillance Data Set 

(CSDS). The MAE and RMSE values of the HNN models 

during the training process are visually represented in Figures 2 
and 3. 

 

In this study, we conducted a comprehensive comparison of the 
simulated program for neurons in the HNN-RANkSATRA 

model with two existing models, namely HNN-

HORNkSAT(Sathasivam, S.; Abdullah, 2011) and 
RANMAXkSAT(Abubakar et al., 2020), using various 

performance metrics. These metrics included the Bayesian 

information criterion (BIC), mean absolute error (MAE), root 
mean square error (RMSE), CPU time, and accuracy in 

classifying the COVID-19 Surveillance Data Set (CSDS). 

Figures 2 and 3 visually represented the MAE and RMSE values 
of the HNN models during the training process. 

 

The focus of the comparison was on the performance of 
different satisfiability logic variants in classifying the CSDS. By 

integrating the CSDS data into the HNN, we created learnable 

Boolean kSatisfiability logic variants based on the HORNSAT 
and RANMAXkSAT models. Figure 3 clearly demonstrated that 

the HNN-RANkSATRA model, with NC values ranging from 1 

to 10, outperformed the HNN-HORNkSATRA and 
RANMAXkSATRA models in terms of RMSE. This superiority 

could be attributed to the utilization of random logical 

inconsistencies in HNN-RANkSATRA, which facilitated the 
determination of the optimal synaptic weight (SW) vector. The 

optimal SW vector played a crucial role in achieving optimal 

CSDS classification. The corresponding MAE values depicted 
in Figure 3 supported the RMSE results shown in Figure 2. 

 
The assessment of model performance was divided into two 

main parts. Firstly, we evaluated the quality of solutions 

generated by different search techniques by considering the 
training errors. Secondly, we analyzed the robustness and 

efficiency of the proposed model by comparing the 

computational time (CT) and resources (Q) required to execute 
the model's mechanisms. The Performance Evaluation section 

provided a detailed analysis of five performance evaluation 

metrics used to assess the training and testing stages of our 
modified models. The main contribution of this research was to 

demonstrate the effectiveness of HNN in satisfiability logic, 

surpassing the performance of existing models. 
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Figure 1: MAE evaluation of HNN models for CSDS classification 

 

 
Figure 2: RMSE evaluation of HNN models for CSDS classification 

 

 
Figure 3: BIC evaluation of HNN models for  CSDS classification 

 
The evaluation of the proposed model reveals intriguing 

insights when comparing the Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Bayesian Information 
Criterion (BIC) values across different models. Figure 1 

clearly illustrates that the HNN-RANkSATRA model 
achieves the lowest MAE values, particularly at NC = 2 with 

an MAE of 0.027. However, as NC increases to 10, the MAE 

also increases to 1.3515. The search process of HNN for 
HORNkSATRA and RANMAXkSATRA follows a similar 

trend, with RANMAXkSATRA exhibiting the highest error at 

NC = 8. 
 

Figure 2 provides an overview of the RMSE performance 

trends for the HNN models, comparing RANkSATRA, 
RANMAXkSATRA, and HORNkSATRA. It is evident that at 

NC = 1, the RMSE value is 0.0323, while at NC = 10, it 

reaches 1.3995. These values are lower compared to HNN-
HORNkSATRA and HNN-RANMAXkSATRA. Notably, 

HNN-RANMAXkSATRA records the highest RMSE, with 

0.832 at NC = 1 and 10.4602 at NC = 10. The search process 
of HNN for RANkSATRA and HORNkSATRA follows a 

similar RMSE trend with minimal variation. As the value of 

NC increases, the complexity of the HNN models' learning 
process grows, as they need to search for consistent mappings 

to interpret the logical rules for optimal CSDS classification. 

However, the HNN demonstrates success in interpreting the 
existing logical rules (RANMAXkSATRA and 

HORNkSATRA) in some cases but gets caught in a trial-and-

error search process, resulting in higher RMSE and MAE 
values. Consequently, the HNN accumulates more significant 

errors in interpreting the optimal representations for 

HORNkSATRA and RANMAXkSATRA. This pattern 

persists as the complexity of the HNN model increases. The 

training process of the HNN involves computationally 

demanding searches for possible representations of logical 

rules, leading to higher RMSE and MAE values. However, the 
proposed RANkSATRA method plays a crucial role in 

establishing optimal interpretations of the logical rules, 

facilitating the connection between occurrences and the 
decision-making process of the HNN in CSDS classification. 

The performance of the HNN, as indicated by the MAE and 

RMSE values in Figure 1 and 2, is further supported by the 
BIC values presented in Figure 3. BIC serves as a criterion for 

selecting the "best" model that achieves a balance between 

under-fitting and overfitting the data. Although BIC aids in 
model selection, it does not provide a comprehensive 

assessment of the overall model quality. In this context, HNN-

RANkSATRA proves to be the most favorable choice for 
CSDS classification, outperforming other models based on 

BIC. The inclusion of MSE in BIC computation tends to 

penalize the values, resulting in HNN exhibiting the lowest 
BIC when mapping the RANkSATRA logical rule. 

 
Table 1. HNN Computational time 

NC 

RANk 

SATRA 

RANMAXk 

SATRA 

HORN 

SATRA 

1 0.643 1.8232 1.735 

2 0.835 2.0279 2.8006 

3 1.9707 5.3258 6.1323 

4 3.2358 11.1566 13.004 

6 9.7422 19.434 24.9292 

7 18.46 22.5552 35.1675 

8 25.2815 36.9081 42.005 

9 37.958 65.6528 58.0088 

10 72.312 91.4101 76.23457 

 
Table 1 presents a comprehensive overview of the CPU timings 

for the learning and retrieval processes of the HNN when 
applied to the RANkSATRA logical rule, compared to the 

existing logical rule, for CSDS classification. These timings 

serve as an indicator of the models' resilience in logic mining. In 
general, when using a smaller NC, the HNN requires less CPU 

time and completes the learning and testing cycle for CSDS 

classification more quickly. However, as the complexity 

increases, the HNN-RANkSATRA model takes longer to 

complete the learning process. 

 
Despite the increased complexity, the HNN demonstrates its 

effectiveness in reducing kSatisfiability inconsistencies and 

computing the global solution within a reasonable timeframe on 
the CPU. It is important to note that the CPU time consumed by 

the HNN for the RANMAXkSAT logical rule consistently 

exceeds that of the proposed RANkSATRA and the existing 
HORNSATRA logical rule. However, the CPU time recorded 

for the previous approaches was higher due to the additional 

iterations required to generate the optimal logical rule using the 
HNN. 

 

The HNN's learning mechanism successfully identifies the 
optimal RANkSATRA logical rule to establish connections 

between attributes in the real CSDS dataset. The proposed 

RANkSATRA logical rule achieves an impressive accuracy of 
92.1%, surpassing the accuracy of the existing logical rules 

being investigated, which achieve up to 80% accuracy in CSDS 

classification. In summary, the HNN demonstrates compatibility 
with RANkSATRA for learning and testing in CSDS 

classification, resulting in the lowest RMSE and MAE errors, as 

well as improved accuracy for a logical rule. Thus, the HNN-
RANkSATRA logical rule shows promise in assisting the 

healthcare sector with CSDS categorization, outperforming 

other existing models in terms of minimal errors and efficient 
computational time. 

 

CONCLUSION 

This study successfully develops the HNN as an effective 

representation of the RANkSAT mechanism and integrates it 

into a logic-based reverse analysis framework within the HNN. 
This approach demonstrates its effectiveness in solving real-life 

datasets, particularly the Covid-19 dataset, by transforming it 

into an optimal logical mapping using the RANkSAT 
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representation. This enables the identification of correlations 

between variables and accurate classification of Covid-19 

instances as either "Detected" or "Not Detected." 

 

However, a limitation of the HNN is its susceptibility to local 
solutions (premature convergence) instead of finding the global 

solution. To overcome this limitation, our future work will 

involve integrating advanced metaheuristic algorithms like 
Differential Evolution Algorithm (DEA), Election Algorithm 

(EA), Genetic Algorithm (GA), Dragonfly Algorithm (DA), 

among others, to enhance the performance of the HNN in the 
training and retrieval processes. This integration aims to prevent 

premature convergence and improve the searching and 

classification capabilities of the HNN. Additionally, we plan to 
explore other variants such as XOR-SAT, Random Half-SAT, 

MAX-kSAT, Random NAE-SAT and so on to address 

optimization problems more effectively. Furthermore, our future 
studies will extend the application of our approach to diverse 

datasets from various domains, including agriculture, finance, 

actuarial science, and the environment. 
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