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1. INTRODUCTION 

 

The basic concepts to understand various 

fascinating and diverse applications of fluid 

mechanics have been given in Bansal (2004) and 

Gupta and Gupta (2013). A rigorous and elegant 

overview about hydrodynamic stability problem of 

an incompressible Newtonian fluid has been well 

addressed in Chandrasekhar (1981) and Drazin and 

Reid (1981). The behaviour and flow characteristic 

of non-Newtonian fluids are significantly different 

with those of Newtonian fluids. Ferrofluids are 

electrically non-conducting colloidal suspensions 

of solid ferromagnetic particles in a carrier fluid 

such as kerosene. Ferrofluids manifest 

simultaneously both liquid and paramagnetic 

properties.  

 

The study of stratified fluids has produced great 

interest in recent years due to its numerous 

industrial and technological applications such as 

thermal stratification of reservoirs and oceans, 

density, temperature and gravitational stratification 

of the atmosphere, salinity stratification in rivers, 

oceans and estuaries, layer stratification in the 

earth’s interior and several heterogeneous mixtures 

in food processing industry. Stratified fluids are 

abundant and the understanding of the behaviour 

and dynamics of these fluids are mandatory for 

scientific and industrial purposes. During the last 

few decades, the study on non-Newtonian fluids 

has attracted several researchers and investigators 

to study such industrially important fluids.  

 

Rosensweig (1985) and Odenbach (2002) discussed 

about the fundamental concepts behind the use of 

ferrofluids and also provided a comprehensive and 

detailed account of ferrohydrodynamics and its 

applications in various commercial usages such as 

novel zero-leakage rotary shaft seals used in 

computer disk drives (Bailey, 1983); 

semiconductor manufacturing (Moskowitz, 1975); 

pressure seals for compressor and blowers 

(Rosensweig, 1985) and more.  

 

Other applications include the uses and interesting 

effects of ferrofluids in a wide range of 

technological and bio-medical purposes such as 

vacuum technology, instrumentation, lubrication 

mechanism, acoustics theory, recovery of metals, 

detection of tumours, drug delivery to a target site, 

magnetic fluid bearings, non-destructive testing, 

sensors and actuators, sorting of industrial scrap 

metals such as titanium, aluminium and zinc, tracer 

of blood flow in non-invasive circulatory 

measurements (Newbower, 1972) and in 

loudspeakers to conduct heat away from speakers 

coil (Hathaway, 1979). The stability of ferrofluids 

intended for medical use is a current topic of 

frontier research and also attractive from a 

theoretical point of view. Thus, the overall field of 

ferrofluid research has a highly interdisciplinary 

character, bringing physicists, engineers, chemists 

and mathematicians together. Finlayson (1970) 

discussed the convective instability of 

ferromagnetic fluid layer heated from below under 

the effect of a uniform vertical magnetic field and 

analyzed the instability with or without considering 
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the effect of body force (gravity force). He also 

concluded that convection can be induced in a 

ferromagnetic fluid due to variation in 

magnetization which depends upon the strength of 

magnetic field, temperature gradient and density of 

fluid and is known as ferroconvection, which is 

very similar to Bénard convection (Chandrasekhar, 

1981).  

 

Magneto-hydrodynamics theory of electrically 

conducting fluids has several scientific and 

practical applications in astrophysics, geophysics, 

space sciences etc. Magnetic field is also used in 

several clinical areas such as neurology and 

orthopaedics for probing and curing the internal 

organs of the body in several diseases like tumours 

detection, heart and brain diseases, stroke damage 

etc. Sunil et al. (2004, 2005) considered, 

theoretically, the thermal and thermosolutal 

convection problems for ferromagnetic fluid to 

include the effects of magnetic field and dust 

particles saturating a porous medium. Sharma et al. 

(2006) pointed out the combined effects of 

magnetic field and rotation on the stability of 

stratified visco-elastic Walters’ (model B') fluid 

through a porous medium and concluded that the 

system is found to be unstable at stable 

stratification, whereas for unstable stratification, 

magnetic field is found to stabilize the small 

wavelength perturbations. It is also shown that the 

growth rate increases with the increase in kinematic 

viscosity and permeability, whereas it decreases 

with the increase in kinematic viscoelasticity. 

Kumar et al. (2013, 2015a, b) discussed thermal 

convection problem for Oldroydian, couple-stress 

and ferrofluid under the effects of magnetic field, 

rotation, compressibility, variable gravity, 

suspended particles and heat source strength 

through a Darcy as well as Brinkman porous 

medium. 

 

The flow through a porous medium is of 

fundamental importance in solidification, chemical 

processing industry, geophysical fluid dynamics, 

petroleum industry, filtering equipment, recovery 

of crude oil from earth’s interior etc.  A detailed 

study of convection through porous medium has 

been given by Nield and Bejan (2006) in his 

famous monograph. In many branches of sanitary 

work, notably in the study of factory conditions, the 

enumeration of the actual number of dust particles 

present is quite as important as the determination of 

the total weight of dust.Dust comes from a wide 

variety of sources, including soil, vegetation 

(pollens and fungi), sea salt, fossil fuel combustion, 

burning of biomass, and industrial activities. 

 

In geophysical context, the fluid is often not pure 

but may instead be permeated with dust particles. 

The effects of suspended particles on the stability 

of superposed fluids have industrial and scientific 

importance in geophysics, chemical engineering 

and astrophysics. Scanlon and Segel (1973) have 

considered the effect of suspended particles on the 

onset of Bénard convection and found that the 

critical Rayleigh number was reduced solely 

because the heat capacity of the pure fluid was 

supplemented by that of the particles. The 

governing hydrodynamic equations of motion are 

solved using a regular perturbation technique. The 

intention is to investigate theoretically the stability 

of a stratified ferrofluid in the presence of magnetic 

field and suspended particles through a porous 

medium using linear stability theory. The use of 

Boussinesq approximation has been made 

throughout in the equations of motion which states 

that the density variations occurs only in the 

external force term or gravitational force term. The 

purpose and practical relevance of the present 

investigation is in determining the influence of the 

impurities and magnetic strength in a stratified 

ferrofluid in thermal convection phenomena. 

 

 

2. MATHEMATICAL FORMULATION 

AND GOVERNING EQUATIONS 

 

The physical configuration considered here consists 

of a ferromagnetic fluid of variable density , 

kinematic viscosity , medium porosity , 

medium permeability , particle number density

and thermometric conductivity , arranged in a 

rectangular channel bounded by two infinite 

horizontal stratum separated by an altitude d apart 

in a porous medium. A uniform vertical magnetic 

field pervades the system with gravity 

acting vertically downward. The Cartesian axes are 

chosen with the z-axis vertically upward and the x-

axis in the direction of applied horizontal 

temperature gradient. It is also assumed that the 

flow in the porous medium is governed by the 

Darcy’s law in the equation of motion. 
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Fig1. Geometrical sketch of the physical problem 

 
The governing equations of conservation of mass and momentum balance for an incompressible magnetized 

ferrofluid in a porous medium are as follows 

 

    

(2.1)

          
(2.2)

         

(2.3)    

where, in the above equations, the symbols denote, 

respectively, the density of ferromagnetic fluid, the time, co-efficient of viscosity, velocity of fluid particles, 

velocity of suspended particles, pressure gradient for ferromagnetic fluid, suspended particles number density, 

magnetic permeability of medium, magnetic permeability of vacuum, magnetic field strength, magnetic 

induction and the external force due to gravity. The term , where being the particle radius, 

represent the Stokes drag co-efficient. 

 

The equation for energy balance which obeys Fourier’s law of heat conduction is  

 

(2.4) 

where, denote, respectively, the density of solid material, heat capacity of solid material, 

specific heat at constant volume, the temperature and the thermal conductivity of fluid particles. 

 

The Maxwell’s equations of electromagnetism are 

        

             (2.5)

           (2.6) 
where, the electrical resistivity is taken as zero. 

 

If mN is the mass of particles per unit volume, then the equations of motion and continuity for the dust particles 

are 
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(2.7)

         (2.8)              

 

The density equation of state is 

        
(2.9)

 
   

where, denote, respectively, the coefficient of thermal expansion, reference density and the 

temperature at the lower boundary. 

Maxwell’s equations for an electrically non-conducting fluid with no displacement currents, become 

        
(2.10)  

According to Penfield and Haus (1967), the magnetic induction (B), magnetization (M) and the intensity of 

magnetic field (H) are coupled by the relation 

         
(2.11)  

Now, for the problem under consideration, it is assumed that the magnetization (M) does not depend on the 

magnetic field (H) and is a function of temperature (T) only. So, as an initial approximation, we consider the 

form 

        
(2.12) 

    

where, are the reference temperature and reference magnetization, respectively and

stands for the pyromagnetic co-efficient with 

    

Now, the stability of the basic state defined below is analyzed using the regular perturbation technique.  

  (2.13) 

 

 

Let the conduction state described by Eq. (2.13) be slightly perturbed by assuming perturbations of the form  

  

(2.14)
 

The changes in density  and magnetization caused by perturbations θ and  in temperature and 

concentration, respectively, are given by 

        (2.15) 

 

Assuming these perturbation quantities to be very small, the relevant linearized perturbation equations for the 

magnetized ferrofluid become  

    

(2.16)

          
(2.17)

         (2.18)

   
1

.mN K N
t

 
     

d
d d d

q
q q q -q

 . 0
N

N
t


  


dq

 0 01 T T      

0 0, and T 

. 0, 0   B H

0 ( B H + M)

 0 0[1 ]M T T  M

0 0T and M

0
0

1

H

M

M T


 
   

 
 0 0, .H M and M M T  H M

     

       

2

0 0 0

0

0,0,0 , 1 , ,
2

0 0, , , , 1 .

b b

b b

zp p z p g T z T z

z N N z z

 

   

          

     

b

b z b

q

H H , H M M

     

     

, , , , , ,

, , , , .

b b x y z

b b x y z

p p z p T T z h h h

z N N N z m m m

 

  

     

     

b b

b

q = q + q H H h

M M m

 m 

0,m m M       

     

 
 

0 0 0

1

.

4

i

e

p g M
t k

K N

 
      





         
 

 
     

d

q
H M h q

q - q
h H

. 0 q

   D
t
 


  


w



Kumar et al., 2016, J. basic appl. Res 2(3): 246-254 

 

250 

 

       

(2.19)

         

(2.20)

          (2.21)

         (2.22)

        (2.23) 

    

where, w and sdenote, respectively, the vertical fluid velocity and suspended particle velocity and 

 

Now, considering an exponential solution with a dependence on x, y and t of the form 

         (2.24)  

where, and are the wave numbers along x and y directions, respectively and  is the 

overall horizontal wave number and n is the growth rate of harmonic disturbance, which is, in general, a 

complex quantity. 

Equations (2.16) - (2.23) yield 

     (2.25)     

   (2.26)

  (2.27)

          (2.28)                                                                                      

         
(2.29)

 
      

(2.30)                                                                 

         
(2.31)

         (2.32)

         (2.33)

 

        (2.34)

         (2.35)

        (2.36) 

    

where,      
(2.37) 

Multiplying Eq. (2.25) by and Eq. (2.26) by and adding, we obtain
 

   (2.38)     
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Now, subtracting Eq. (2.27) (after multiplying by ) from Eq. (2.38) and also using Eqs.  (30), (33) and (37), 

an expression is obtained as 

   (2.39) 

where,  

Equation (2.39) represents the general dispersion relation for stratified ferromagnetic fluid in terms of magnetic 

field and dust particle parameters in a porous medium. 

 

3. EXPONENTIALLY VARYING STRATIFICATIONS 

 

Considering the stratifications in various physical parameters of the forms 

   
(3.1) 

where, all are constants. 

 

On using stratification expression (3.1) in relation (2.39) and obtain 

   (3.2) 

where, is the square of Alfvén velocity named after Hannes Alfvén with  

The boundary conditions (for the case of free boundaries) are defined as 

        
(3.3)

 Now, a proper solution for  satisfying the boundary condition (3.3) can be proposed as

 

          

(3.4)

 where,  are constants and  for the lowest mode. 

On using solution (3.4), Eq. (3.2) yields 
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Simplifying  Eq. (3.5), a polynomial of degree four is obtained as 
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(3.6) 

where, the coefficients  all are constants and defined as 

 

where, in the above coefficients, it is assumed . Equation (3.6) is bi-quadratic in the growth 

rate  and therefore it must give four roots. 

 

4. DISCUSSION AND RESULTS 

 

The effect of various embedded parameters responsible for the stability/instability of the system is discussed and 

some more important results are also obtained. 

 

Stable stratification cases:  

Case1: Let  be the four roots of Eq. (3.6) then for the conditions

, all the coefficients 

will be positive and therefore Eq. (3.6) does not admit any positive root of n.So, the 

product of roots  

This indicates that the system is stable for disturbances of all wave numbers. 

Case2:In the absence of magnetic field , the system may have stabilizing effect under 

the conditions
 

 

Unstable stratification cases: 

Case1. If and

then all the coefficients will be positive and 

therefore Eq. (3.6) does not admit any positive root. So, the system has stabilizing effect for disturbances of all 

wave numbers. 

Case2: If then the constant term in Eq. (3.6) will be 

negative and therefore Eq. (3.6) has at least one positive root thereby implying the instability of the system. 

Case3:In the absence of magnetic field , the term will be negative for . 

Hence the system is unstable for all wave numbers. 
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The variation in the growth rate parameter for unstable stratification with respect to various parameters such 

as kinematic viscosity , medium porosity , medium permeability , square of Alfven velocity  and 

suspended particle parameter B has been examined analytically by evaluating various derivatives i.e. 

respectively.  

 

    
(4.1) 

 
(4.2) 

 

    
(4.3)

 

    
(4.4)

 

       
(4.5) 

 

 

From the aforementioned derivatives (4.1) – (4.5), 

it is clear that the growth rate increases with an 

increase in medium permeability and suspended 

particles implying thereby the destabilizing effects 

of medium permeability and suspended particle 

parameter. The parameters kinematic viscosity and 

square of Alfvén velocity both have stabilizing 

effects as the growth rate decreases under these 

parameters. The medium porosity has a dual 

character as the growth rate both increases and 

decreases according as the numerator in Eq. (4.2) is 

negative or positive respectively. 
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