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INTRODUCTION 

Dye sensitized solar cells (DSSCs) is a third 

generation of solar cell that use dye to absorb light 

and generate electricity. Compared to silicon based 

solar cells, DSSC possess low cost of materials 

and fabrication process added with reasonable 

efficiency (η) (Green, 2001). Nanoporous metal 

oxide of titanium dioxide (TiO2) was introduced in 

DSSCs by M. Gratzel and made the breakthrough 

in η of DSSCs with the value of 10% at AM 1.5 

solar radiation.   The Gratzel’s cell was composed 

of nanocrystalline colloidal TiO2 films sensitized 

by polypyridyl complexes of Ruthenium (Ru) 

known as the N3 dye and I
-
/I

-3
 solution in volatile 

organic solvent as an electrolyte (O’Regan and 

Grätzel, 1991). Basically, DSSC architecture is 

built by nanocrystalline semiconductor oxide film 

electrode, dye sensitizers, electrolytes, counter 

electrode and transparent conducting substrate. 

Dye acts as an absorber of photon from sunlight 

and transform it into electricity. Until now, Ru 

complexes have proved to be the most effective 

constantly. However the resource of noble metal 

Ru is scarce, hence their costly production Senthil 

et al., 2011). Due to this problem, researcher 

searched other ways to substitute the Ru-based dye 

and lead to the findings in application of organic 

dyes and natural dyes into DSSC. Organic dyes are 

economically and the highest η reported by using 

this kind of sensitizers as high as 9.8% (Zhang et 

al., 2009). Unfortunately, organic dyes also have 

the drawbacks, such as cumbersome synthetic 

routes and low yields. In other hand, natural dyes 

can be produced by extraction of pigments using 

simple procedures from flowers, leaves, and fruits. 

This resource not only abundance but also easy to 

be attained. Even though the performance of DSSC 

based on natural dyes are lower than organic based 

one, the efforts to improve it still continues 

motivated by its cost efficiency, non-toxicity, and 

complete biodegradation (Sirimanne et al., 2006). 

 

CONCEPTUAL OF MECHANISM IN DSSC 

Basically, DSSC is like a photochemical cells that 

its principal of working is based solely on 

chemical reactions. Three basics steps involve in 

DSSC are absorption, separation and collection of 

charge carriers. All of this three steps are studied, 

attuned and optimized intensively in numerous 

researches to attain better efficiency. By referring 

to Figure 1, Right after light illumination upon 

DSSC, molecules in dye became photo excited 

(Eq. 1) and within few femto seconds, the electron 

injection is prompted from excited dye S* to the 

CB of semiconductor (Eq.2) within the sub pico 

second time scale (at this moment, they are rapidly 

thermalized by lattice collisions and phonon 

emissions within less than 10 fs. In other hand, the 

occurrence of intermolecular relaxation of dye 

excited states might complicate the injection 

process and change the timescale).  In a right 

condition, the relaxation of the excited dye S* 

(within nanosecond) (Eq. 3) is rather slow 

compared to injection, ensuring the injection 

efficiency to be unity. After that, within 

microseconds the HOMO of dye is regenerated by 

I
-
 (Eq. 4) effectively annihilating S* and 

intercepting the recombination of electrons in 

semiconductor with S
+
 that happens in the 

millisecond domain. Then, the two most important 

processes which are electron percolation across the 

semiconductor layer and the redox capture of the 

electron by the oxidized relay (back reaction, Eq. 
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5), I
3-

 , within milliseconds or even prolonged into 

seconds (Matthews et al., 1996). 

 

 
Figure 1: Schematic structure and working principle of DSSC 

(Monishka, 2012). 

 

Anode: 

S + hv  S* photon absorption  (1) 

S*  S
+
 + (TiO2) electron injection  (2) 

2S
+
 +3I

- 
 2S + I

-
3 regeneration  (3) 

Cathode: 

I
-
3 + 2e

-
(Pt)  3I

- 
redox process  (4) 

Cell: 

e
-
(Pt) + hv  3I

-
    (5) 

 

DSSC FABRICATION 

DSSC is composed of photoanode (conductive 

substrate, semiconductor and dye), electrolyte and 

counter electrode.  

 

Photoanode  

Photoanode consist of conductive substrate 

typically either indium tin oxide (ITO) substrate or 

flurinated tin oxide (FTO) substrate, 

semiconductor (metal oxide: TiO2, ZnO, ZnS and 

Nb2O5) and dye (Ru-based, organic and natural). 

This paper only focus on the comparison between 

natural dyes that have been reported for achieving 

better efficiency. 

 

Electrolyte  

Two main characteristic acquired in electrolyte 

medium; electrically conductive and also generates 

dye. Based on their physical state, the electrolytes 

can be classified into 3 groups; liquid electrolyte, 

quasi-solid electrolyte and solid electrolyte (Jinchu 

et al., 2014).  

 

Counter electrode 

Counter electrode is the last part in DSSC 

architecture. In typical DSSC counter electrode 

consist of metal casted on conductive substrate. 

The counter electrode must have ohmic contact 

with the material and also inert, which do not 

chemically react with the materials but able to 

diffuse on the surface and into the interior of the 

material of even at room temperature (Qiao, 2006).  

 

PHOTOVOLTAIC PARAMETERS 

In DSSC, the photovoltaic performances (I-V 

measurement) are mainly characterize by the 

following parameters; open-circuit voltage (Voc), 

short-circuit photocurrent density (Jsc), fill factor 

(FF), efficiency (η). All of these parameters 

mostly be measured under light radiation with 

intensity of 1000 W/m
2
 at AM 1.5.Voc is the 

maximum voltage the solar cells can generate 

under the incident of light. Voc is produced when 

the solar cell is connected to a load with infinite 

resistance (I = 0). Voc is corresponded to gap 

between the quasi-Fermi level of the 

semiconductor and the redox potential of the 

electrolyte while Jsc is the photocurrent generated 

per unit area of under short circuit current 

condition. It is depended on the optical properties 

of the dye and also to different dynamic processes 

in the cell. In J-V curve (Figure 2), the intersection 

in y- axis is regarded as Jsc while in x-axis is Voc. 

FF is the product of maximum power (Jmax x Vmax) 

per the product of multiplication of Voc and Jsc. 

Finally η can be determined by ratio of maximum 

power of output to the power of incident light.   

FF = (JMPVMP / JSCVOC) = Pmax / JSCVOC (6)  

η = (Pmax / Pin) x 100 % 

 = [FFJSCVOC / Pin] x 100%   (7)  

 
Figure 2: J-V curve of photovoltaic (Jinchu et al., 2014). 

 

NATURAL DYES APPLICATION IN DSSC 

The color of flowers, fruits and leaves all depend 

on their second metabolites also known as 

pigments. The colorful of flowers and fruits is a 

way of plant to attract the pollinators together with 

another factors including fragrance, floral shape 

and nectar reward. Pigmentation of plant occurs 

due to the interaction between electronic structures 

of pigment and sunlight which alter the 

wavelengths that are either transmitted or reflected 

by the plant tissue. There are two ways to describe 

pigments;  

 

1) The wavelength of maximum absorbance (λmax), 

  

2) The color perceived by human’s eye (Monishka, 

2012).  

 

Some common pigments are betalains (betacyanins 

and betaxanthins), carotenoids (carotenes and 

xanthophylls), chlorophyll and flavonoids 

(anthocyanins, aurones, chalcones, flavonols and 

proanthocyanidins). Most popular natural dyes in 

DSSC are shown in Figure 3. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3: Molecule structures of some most common pigments 
used as a dye a) anthocyanidin, b) anthocyanin. c) betanins and 

d) chlorophyll.  

 

The photovoltaic parameters of DSSC based on 

various natural dyes were summarized in Table 1.  

The “*” symbol indicates the high efficiency in 

terms of natural dye based DSSC in the meantime. 

From Table 1 we can speculate that DSSC with 

anthocyanin dye have relatively higher η among 

the natural based dye DSSC. Eventhough, it 

supposed the chlorophyll dye based DSSC has 

higher η because chlorophyll absorb red light 

which is the most intense in visible region of 

electromagnetic, the  anthocyanin in flavylium 

state is a cation which its net electric charge is 

unstable hence has more tendency to mobilize 

electron. Smestad and Grätzel, 1998 was 

concluded that the interaction between 

anthocyanin and TiO2 is high. Anthocyanin has –

OH groups and capable in chelating to the Ti
IV

 

sites on TiO2 surface as shown in Figure 4 

Natural dye suffer from low Voc. It is speculated 

that recombination pathways of electron/dye cation 

are inefficient and acidic environment of dye 

absorption. In acidic environment, H
+
 is absorbed 

by TiO
2
 (H

+
 are the potential determining ions for 

TiO
2
) and caused a positive shift on the Fermi 

level of the TiO
2
, thus deterred the maximum 

photovoltage that could be delivered by DSSC. 

The charge transfer resistance in the 

TiO2/dye/electrolyte interface caused the 

decreasing in Jsc and to overcome this problem, the 

natural dye must have several =O or –OH 

functional groups in their molecule structure 

(Calogero et al., 2010, Smestad and Grätzel, 1998).  

In our work, we use anthocyanin dye extracted 

from red frangipani flowers as a sensitizer and 

hydrothermally grown ZnO nanorods as metal 

oxide semiconductor in photoanode of our DSSC. 

We post anneal our ZnO nanorods at various 

temperature and then sensitize it in red frangipani 

dye for varied duration. Red frangipani dye is 

suitable to be applied as sensitizer because of its 

low unoccupied molecular orbital (LUMO) is 

higher than the conduction band of ZnO which is 

one of pre requirements for DSSC material 

choices. 

 

DENSITY FUNCTIONAL THEORY IN DSSC 
Density functional theory (DFT) is quantum 

chemistry approach to matter to investigate the 

electronic structure. Mostly it is applied for 

calculating, e.g., binding energy of molecules in 

chemistry and the band structure of solids in 

physics (Capelle, 2006). In DSSC, DFT is used to 

investigate the electronic structure of dyes. Most 

reported literatures used GAUSSIAN 09W 

software (Frisch et al., 2010) software package to 

run the characterization of DFT and time 

dependent density functional theory (TD-DFT) 

(Kumara et al., 2013, Capelle, 2006). DFT method 

is capable to give insight in electron movement 

and mechanisms that took place in DSSC. Most 

studies use DFT as a screening method to find the 

right material combinations to be used in future or 

as a tool to investigate any possible errors occurred 

in an unsatisfied results from experiments. Kumara 

et al., 2013 reported the theoretical studies of black 

tea waste extract as a potential sensitizer and four 

theaflavin analogues which are responsible for the 

dark color of black tea were studied using DFT 

and TD-DFT. It was reported that theaflavin and 
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theaflavin digallate were the most probable 

sensitizers (Figure 5).  

  

 
Table 1: Summary of natural dye based DSSCs photovoltaic performance. 

Natural dye Jsc (mA/cm
2
) Voc (V) FF η (%) References 

Rosella 1.63 0.40 0.57 0.37 Wongcharee et al., 2007 

Blue pea 0.37 0.37 0.33 0.05  

Mixed rosella blue pea 0.82 0.38 0.47 0.15  

Bixin 1.10 0.57 0.59 0.37 Gòmez-Ortíz et al., 2009 

Annatto 0.53 0.56 0.66 0.19  

Norbixin 0.38 0.53 0.64 0.13  

Fruit of Calafate 6.20 0.47 0.36  Polo and Iha, 2006 

Syrup of Calafate 1.50 0.38 0.20   

Skin of Jaboticaba 7.20 0.59 0.54   

Dragon fruit 0.20 0.22 0.30 0.22 Ali and  Nayan, 2010 

Pomegranate juice 0.20 0.40 0.45 1.50* Bazargan, 2009 

Begonia 0.63 0.537 0.72 0.24 Zhou et al., 2011 

Tangerine peel 0.74 0.592 0.63 0.28  

Marigold 0.51 0.542 0.83 0.23  

Perilla 1.36 0.522 0.69 0.50  

Rhododendron 1.61 0.585 0.61 0.57  

Fructus lycii 0.53 0.689 0.46 0.17  

Herba artemisiae scopariae 1.03 0.484 0.68 0.34  

Chinaloropetal 0.84 0.518 0.62 0.27  

Petunia 0.85 0.616 0.60 0.32  

Bauhinia tree 0.96 0.572 0.66 0.36  

Yellow rose 0.74 0.609 0.57 0.26  

Flowery knotweed 0.60 0.554 0.62 0.21  

Lithospermum 0.14 0.337 0.58 0.03  

Violet 1.02 0.498 0.64 0.33  

Chinese rose 0.90 0.483 0.62 0.27  

Broadleaf holly leaf 1.19 0.607 0.65 0.47  

Rose 0.97 0.595 0.66 0.38  

Cofee 0.85 0.559 0.68 0.33  

Lily 0.51 0.498 0.67 0.17  

Mangosteen pericap 2.69 0.686 0.63 1.17*  

Black rice 1.14 0.55 0.52  Hao et al., 2006 

Capsicum 0.23 0.41 0.63   

Rosa xanthina 0.64 0.49 0.52   

Kelp 0.43 0.44 0.62   

Erythrina variegate 0.78 0.48 0.55   

Crocetin 2.84 0.43 0.46 0.56 Yamazaki et al., 2007 

Crocin 0.45 0.58 0.60 0.16  

Red Sicilian orange 3.84 0.34 0.50  Calogero and Marco, 2008 

Purple eggplant extract 3.40 0.35 0.40   

Red turnip 9.50 0.43 0.37 1.70* Calogero et al., 2010 

Wild Sicilian prickly pear 8.20 0.38 0.38 1.19*  

Sicilian Indian 2.70 0.38 0.54 0.50  

Bougainvillea 2.10 0.30 0.57 0.36  

Hibiscus surattensis 5.45 0.39 0.54 1.14* Hernández-Martínez et al., 

2010 

Hibiscus rosasinesis 4.04 0.40 0.63 1.02*  

Sesbania grandiflora 4.40 0.41 0.57 1.02*  

Ixora macrothyrsa 1.31 0.40 0.57 0.30  

Rhododendron arboretum 

zeylanium 

1.15 0.40 0.64 0.29  

Ipomoea 0.91 0.54 0.56 0.28 Lai et al., 2008 

Curcumin 3.039 0.51 0.44 1.42* Jinchu et al., 2014 

Shisonin 3.56 0.55 0.51 1.01 Kumara et al., 2006 

Chlorophyll 3.52 0.43 0.39 0.59  

Shisonin and chlorophyll 4.80 0.53 0.51 1.31*  

Red Bougainvillea glabra 2.34 0.26 0.74 0.45 Chang et al., 2010 

Red Bougainvillea spectabilis 2.29 0.28 0.76 0.48  

Violet Bougainvillea glabra 1.86 0.23 0.71 0.31  

Violet Bougainvillea spectabilis 1.88 0.25 0.73 0.35  

Bongainvillea brasiliensis 5.00 0.25 0.36 0.45 Lai et al., 2008 (water based 

DSSC) 

Garcinia suubelliptica 6.48 0.32 0.33 0.69  

Ficus reusa 7.85 0.52 0.29 1.18*  

Rhoeo spathacea 10.9 0.50 0.27 1.49*  

Black tea waste 4.21 0. 268 0.41 0.46 Kumara et al., 2013 

Syzygium guineense 2.03 0.506 50.0 0.51 Tadesse et al., 2012 

Delonix regia 1.33 0.30 0.39 0.317 Senthil et al., 2011 

Eugenia Jambolana 1.49 0.35 0.48 0.505  

Eriglossum rubiginosum 0.035 0.240 0.708 5.948* Hambali et al., 2015 

Syzygium cumini 0.1 0.063 0.317 2.00*  

Husk of purple corn  3.57 0.46 0.64 1.06*  

Cob of purple corn  3.42 0.48 0.62 1.01*  

Silk of purple corn 3.25 0.48 0.62 0.96 Phinjaturus et al., 2016 



Dhafina et al., 2016, J. basic appl. Res 2(4):516-521 

 

520 

 

 

 

(a)

 
(b) 

 
 
Figure 5: Molecular structure of (a) theaflavin and  (b) 

theaflavin digallate (Kumara et al., 2013).  
 

Ekanayake et al., 2013 investigated the molecular 

geometries, electronic structures, optical 

absorption spectra and proton affinity of cyanidin, 

pelargonidin and maritimein from constituents of 

Canarium odontophyllum with DFT/TDDFT. It 

was reported photovoltaic performance of 

cyanidin-DSSC is the best compared with the other 

two and cyanidin was presented with the smallest 

band gap.  

 

CONCLUSION 

Despite of Ru-based dye DSSC exhibit a constant 

high photovoltaic performance, their synthesis is 

tedious and expensive. In other hand natural dye is 

inexpensive, abundance, easy to be prepared and 

biodegradation completely. Currently, natural dyes 

based DSSC performed rather low η. In natural 

dye based DSSC realm, the DSSC that contain 

anthocyanin one possess the highest η. The 

molecular structure of anthocyanin itself assist the 

efficient electron mobility from anthocyanin to 

metal oxide semiconductor (TiO2 mostly) 

compared to other kind of natural dye. However, 

modification on molecular structure and 

architecture of DSSC need to be considered in 

order to optimize its photovoltaic performance. In 

our work, we use red frangipani dye and ZnO 

nanorods as active materials in photoanode for 

DSSC and currently is in progress. 
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