

Deuterium Exchange of the Q-Methylene Group Protons in the Quinazolones. III. Environment Influence on the Exchange Rate

Levkovich M. G.,¹ Elmuradov B. Zh.,² Shakhidoyatov Kh. M.,² Abdullaev N. D.¹

¹Physical methods of Research Laboratory, Institute of the Chemistry of Plant Substances, Uzbek Academy of Sciences, Tashkent 100170, Uzbekistan.
²Organic Synthesis Department, Institute of the Chemistry of Plant Substances, Uzbek Academy of Sciences, Tashkent 100170,

Uzbekistan.

*corresponding author: <u>mlevkovich@rambler.ru</u> or <u>b_elmuradov@mail.ru</u>

Received: 28-3-2016 Revised: 15-4 -2016 Published: 6-5-2016

Keywords: deoxyvasicinone, proton exchange, deuterium exchange, kinetic ¹H NMR spectroscopy Abstract: By ¹H NMR spectroscopy methods the exchange process of α methylene group protons of deoxyvasicinone by deuterium atoms in the medium of CD₃OD+NaOH and CD₃OD+CD₃COOD depending on NaOH concentration and temperature of the solution and CD₃COOD have been investigated. It was shown that NaOH and CD₃COOD have exchange initiator character, and their effect on the concentration are linear to D-exchange rate. The exponential dependence on temperature allowed us to determine the potential barrier of the initiation of the D- exchange process for deoxyvasicinone in the CD₃COOD.

INTRODUCTION

Tricyclic quinazoline derivatives, which were isolated from plants Peganum harmala (deoxyvasicinone, 1) and Mackinlaya sp. (Mackinazolinone, 2) are widely used in the some field of the medicine [Tulyaganov,1979; Fitzgerald et al., 1966]. Together with that, these compounds react with electrophilic and nuclephilic reagents on benzene ring and/or activated methylene group in α -position. Earlier, we studied different substitution reaction (monoand dibromination) and condensation (electrophilic addition-elimination with aldehydes, formylation by Vilsmeier-Haack reagent) reactions and etc. [Shakhidoyatov and Elmuradov, 2014; Abdurazakov et al., 2013; Nasrullayev et al., 2012; Turdibaev et al., 2011; Elmuradov et al., 2010, 2011; Belovodskiy et al., 2010; Abdurazakov et al., 2009].

In continuation of the work begun in [Shakhidoyatov et al., 2014] (exchange of the α methylene protons of quinazolones on deuterium atoms in the medium of CD₃OD+NaOH and CD₃COOD) in the present work we investigated the dependence of the exchange process on environmental conditions: the concentration and temperature of exchange initiators. In the works [Shakhidoyatov et al., 2014; Levkovich et al., 2013; Levkovich et al., 2015], it was observed that the D-exchange is well in an alkaline solution of methanol and/or acetic acid, but in pure CD₃OD was very slow or even not at all observed.

For mackinazolinone (2) in CD_3OD semiexchange time of H-9 protons was about 1000 hours, and in the case of deoxyvasicinone and 7- or 8-membered homologues with polymethylene rings D- exchange process is at all not detected:

The presence of NaOH, $(C_2H_5)_3N$ or CD_3COOD in methanol initiated D-exchange in all the 4 homologues - deoxyvasicinone (1), mackinazolinone (2) and 7- or 8-membered homologues (3,4) with polymethylene cycles.

MATERIALS AND METHODS

Starting compounds were synthesized according the literature procedures [Shakhidoyatov and Elmuradov, 2014; Abdurazakov et al., 2013; Belovodskiy et al., 2010]. Mps were measured on a Boethius and MEL-TEMP apparatus manufactured by Barnstead International (USA) and were uncorrected. Solvents were purified by standard procedures. Organic solutions were dried over anhydrous Na₂SO₄ and concentrated with a RVO-64 ROT VAC Evaporator at reduced pressure.

To register ¹H NMR spectra were taken sample deoxyvasicinone about 4.0 - 5.0 mg. and dissolved in 0.5 cm³ of CD₃OD + NaOH or CD₃COOD. ¹H NMR spectra were recorded on a spectrometer NMR UNITY 400+ (Varian) with an operating frequency of 400 MHz. Hexamethyldisiloxcane (HMDSO) was used as internal standard, chemical shift δ of ¹H was recorded in ppm.

The quantity of the proton signal of H-9 was measured by the integrated signal intensity with respect to H-10 and H-11. When measuring of the concentration dependences the temperature of the sample was kept in the range of 21-23°C. At temperature measurements a temperature value is set with an accuracy of 0.5° C.

RESULTS AND DISCUSSION

In the present work for determination of the role of NaOH in the initiation of the D-exchange process of deoxyvasicinone was studied the exchange rate dependence on the concentration of NaOH. For the numerical evaluation of the exchange speed (T1/2) it was measured semi- exchange time of N-9 protons on deuterium atoms. In the work [Levkovich et al., 2016] it was shown, that although in this case $T\frac{1}{2}$ is not conventional physical constant of the process, however, quite reliably can serve as a measure of the exchange process speed (signal decay of H-9 protons is different from the exponential function and therefore T1/2 cannot be considered as constant of the process time, such notion be defined as a common half-life [Levkovich et al., 2016]). Concentration of NaOH in CD₃OD was varied in the range 0.062-4.00 mg / ml with six-step double concentration measurement. The obtained schedule dependencies are shown in Fig.1.

Fig.1. Flowing kinetics of D- exchange of α -methylene protons deoxyvasicinone in CD₃OD+NaOH at different concentrations of alkali. The case *a* corresponds to a molar ratio of NaOH: deoxyvasicinone= 0.032:1,and in the case *g* - 2: 1.

Even at a concentration of NaOH 0.062 mg/ml of deoxyvasicinone and 9.4 mg/ml semi- exchange time was only approximately 4 hours, while in pure CD₃OD exchange process was not observed even at 1000 hours. Noteworthy ramp exchange rate with increasing concentration of NaOH. Each doubling the alkali concentration (graphics $\mathbf{a} \rightarrow \mathbf{b} \rightarrow \dots \rightarrow \mathbf{g}$) semi- exchange speed (V=1/T¹/₂) increased by ~ 30%. That is clearly expressed for deoxyvasicinone direct proportion:

$1 / T^{1/2} = 0.3 * C (NaOH (mg/ml))$

The dependence of the D-exchange rate of deoxyvasicinone concentration in a concentration range from 8.0 to 40.0 mg/ml was not found. Thus, the direct proportion indicates, that NaOH is the initiator of the process, and not involved in any chemical conversion.

A similar experiment of mackinazolinone when added CD₃COOD to CD₃OD also led to a linear

dependence on the concentration of acetic acid. The molar ratio of CD_3COOD mackinazolinone was in the range from 2.4: 1 to 34.0: 1.

$1/T\frac{1}{2} = 0.01 * C (CD_3 COOD (mg/ml))$

D- exchange rate dependence on deoxyvasicinone concentration, as in the previous case, is not detected.

In a separate series of experiments for initiation of D-exchange in methanol were added D_2O and HCl. However, these additives to D- exchange failed. Hence just excess of protons or hydroxyl groups increase the acidity does not lead to the initiation of the process. Apparently molecules of NaOH and CD₃COOD with deoxyvasicinone form the specific dynamic formation. The result of this is the exchange of protons by deuterium atoms. These formations (MC - molecular complexes) must be short-term (dynamic). If a MC strong enough and long-lived, depending on the concentration of the initiators exchange rate would have to occur nonlinearity - the saturation point C (initiator) : C (deoxyvasicinone) = 1:1.

Another important parameter of the environment is a temperature. Temperature dependence of Dexchange rate for deoxyvasicinone was observed in CD₃COOD in the temperature range 20-100°C.

Fig.2. The dependence of the D- exchange rate of α -methylene protons of deoxyvasicinone in CD₃COOD on the solution temperature.

Semi- exchange time T¹/₂ in the experiment illustrated in Fig.2., and in the range from 10 hours (T=22°C) to about 2.5 minutes (T=100°C). The graphics Fig.2. clear well-defined relationship: at every step ($\Delta T \approx 15^{\circ}$ C) temperature changes during semi- exchange varied ≈ 3 times. This indicates a well-defined exponential dependence, from which it can reliably determine the potential barrier of the activation D- exchange process as:

 $E_{init} \approx \!\! 18 \ kcal/mol$

From well-defined semi-logarithmic relationship (Fig.2) deviated only one point: $T=100^{\circ}C$, $T\frac{1}{2}=2$

min. However, such a great speed of the process leading to the complexity of experimental measurements $T^{1/2}$, which could lead to an experimental measurement errors.

CONCLUSION

In the pure methanol D-exchange does not take place or it is very slow. To activate the process requires a certain initiators forming with deoxyvasicinone molecules dynamic complexes. In the present case it was a molecule of NaOH or CD₃COOD. However, the initiators may make other compounds. For example in [Shakhidoyatov et al., 2014], a D-exchange in the presence of $(C_2H_5)_3N$, but proceeding with much less efficiency than in NaOH.

Initiation barrier of deoxyvasicinone in CD_3COOD was ≈ 18 kcal/mol, which leads to a substantial depending of the rate on the temperature in the range of room temperature.

ACKNOWLEDGMENTS

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA-F7-T207).

REFERENCES

- Abdurazakov, A. Sh., Elmuradov, B. Zh., Turdibaev, Zh. E., Shakhidoyatov, Kh. M. (2009). Interaction of 2,3-tetramethylene-3,4dihydroquinazoline-4-one and its derivatives with aromatic aldehydes and furfural. *Chem. Nat. Compd.*, Vol. 45, №3, 402-408.
- Abdurazakov, A. Sh., Elmuradov, B. Zh., Ortikov, I. S., Levkovich, M. G., Shakhidoyatov, Kh. M. (2013). Synthesis of 8-amino- and 8acetyl(benzoyl) aminomackinazolinones and their condensation with aldehydes. *Chem. Nat. Compd.*, Vol. 49, №2, 305-310.
- Belovodskiy, A. V., Shults, E. E., Shakirov, M. M., Romanov, V. E., Elmuradov, B. Zh., Tolstikov, G. A., Shakhidoyatov, Kh. M. (2010). Synthes of the hybrid molecules including fragments sesqiterpene lactones and plant alkaloids. *Chem. Nat. Compd.*, Vol. 46, №6, 747-751.
- Elmuradov, B. Zh., Abdurazakov, A. Sh., Shakhidoyatov, Kh. M. (2010). Directions of reactions of 6-amino-, -acetylamino-, benzoylaminodeoxyvasicinones with aldehydes. *Chem. Nat. Compd.*, Vol. 46, № 2, 262-267.
- Elmuradov, B. Zh., Makhmadiyarova, Ch. E., Turgunov, K. K., Tashkhodjaev, B., Shakhidoyatov, Kh. M. (2011). (4-Nitrophenyl)(1,2,3,9-tetrahydropyrrolo[2,1b]quinazoline-3-yl)methanol monohydrate. *Acta Crystallographica*, E67, o1680.
- Fitzgerald, I. S., Johns, S. R., Lamberton, J. A., Radcliffe A.H. (1966). 6,7,8,9-Tetrahydropyridoquinazolines, a new class of

alkaloids from *Mackinlaya* species (Araliaceae). *Austral. J. Chem.* **19**, 151-159.

- Levkovich, M. G., Elmuradov, B. Zh., Abdullayev, N. D., Shakhidoyatov, Kh. M. (2013). Reactivity, deuterium exchange rate of the methylene group protons of deoxyvasicinone and its homologues, Xth International Symposium on the Chemistry of Natural Compounds, Tashkent, Uzbekistan, P.27.
- Levkovich, M. G., Elmuradov, B. Zh., Shakhidoyatov, Kh. M., Abdullayev, N.D. (2015). Deuterium exchange of α -methylene group protons in the tricyclic quinazolin-4-ones and -4-thiones, 11th international symposium on the chemistry of natural compounds, Antalya, Turkey, P. 10.
- Levkovich, M. G., Elmuradov, B. Zh., Shahidoyatov, Kh. M., Abdullaev, N. D. (2016). Investigation of deuterium exchange of α-methylene group protons of mackinazolinone by spectroscopy ¹³CNMR. *Chem. Nat. Compd.* (*Unpublished results*)
- Nasrullayev, A. O., Turdibaev, Zh. E., Elmuradov, B. Zh., Yili, A., Aisa, H. A., Shakhidoyatov, Kh. M. (2012). Chemical transformations of mackinazolinone and its derivatives. *Chem. Nat. Compd.*, Vol. 48, №4, 638-642.
- Shakhidoyatov Kh. M. and Elmuradov B. Zh. (2014). Tricyclic quinazoline alkaloids: isolation, synthesis, chemical modification and biological activity. *Chem. Nat. Compd.*, Vol.50, №5, 781-800.
- Shakhidoyatov, Kh. M., B.Zh. Elmuradov, M.G. Levkovich, N.D. Abdullayev. Reactivity and H–D exchange rate of the α-methylene of deoxyvasicinone and its homologues, *Chemistry of Natural Compounds*, 2014, Vol. 50, №6, 1060-1065.
- Tulyaganov N. (1979). Pharmacology of Natural Compounds [in Russian], Fan, Tashkent, Uzbekistan. P.71.
- Turdibaev, Zh. E., Elmuradov, B. Zh., Khakimov, M. M., Shakhidoyatov, Kh. M. (2011). Formylation of deoxyvasicinone with alkylformates: synthesis and interaction of αhydroxymethylidene deoxyvasicinone with isomeric aminophenols and aminobenzoic acids. *Chem. Nat. Compd.*, Vol. 47, №4, 600-603.