Dual Action of Avarol Quinone Terpenoid: Disrupting Cell Wall and Membrane Integrity in Staphylococcus aureus

Authors

  • Syed Idid Faculty of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
  • Shahbudin Saad Department of Marine Science, Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
  • Deny Susanti Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.51152/jbarbiomed.v11i1.249

Keywords:

Avarol quinone terpenoid, Staphylococcus aureus, antibacterial mechanism, cell membrane disruption, cell wall targeting, ion leakage, ATP depletion, autolysis, membrane depolarization

Abstract

The rising threat of multidrug-resistant bacteria necessitates the discovery of novel antibacterial agents with distinct mechanisms of action. In this study, we investigated the antibacterial activity and mechanism of action of Avarol Quinone Terpenoid (AQT), a polyfunctional compound isolated from the marine sponge Neopetrosia exigua, against Staphylococcus aureus ATCC 25923. Minimum inhibitory concentration (MIC) testing revealed that AQT exhibits bacteriostatic activity at 2.6 μg/mL and bactericidal activity at 5.2 μg/mL. To further explore its antibacterial mechanism, a series of in vitro assays were performed to assess its impact on bacterial viability, morphology, membrane integrity, and cellular metabolism. Time-kill analysis demonstrated a concentration-dependent reduction in S. aureus viability. Scanning electron microscopy (SEM) revealed severe morphological alterations in AQT-treated cells, including membrane deformation and collapse. Membrane permeability was significantly increased, as indicated by elevated uptake of crystal violet and propidium iodide dyes. These effects were accompanied by marked leakage of nucleic acids, proteins, potassium, calcium, and ATP, supporting membrane disruption. SDS-PAGE analysis showed reduced total protein content, although lipase activity remained unaffected, suggesting AQT does not inhibit protein synthesis. API Staph tests indicated that AQT inhibited sugar utilization (lactose, maltose, and N-acetylglucosamine) and suppressed arginine dihydrolase activity, potentially impairing ATP generation. Autolysis assays showed increased activity of cell wall-degrading enzymes, consistent with cell wall-targeting antibiotics. Furthermore, membrane depolarization assays using DiSC₃(5) confirmed the dissipation of membrane potential. Collectively, these findings suggest that AQT exerts its antibacterial effects through a multifaceted mechanism targeting both the cell wall and the cytoplasmic membrane, leading to loss of membrane integrity, energy depletion, and bacterial cell death. AQT thus holds promise as a potential anti-S. aureus therapeutic agent.

References

Aiemsaard, J., Aiumlamai, S., Aromdee, C., Taweechaisupapong, S., and Khunkitti, W. (2011). The effect of lemongrass oil and its major components on clinical isolate mastitis pathogens and their mechanisms of action on Staphylococcus aureus DMST 4745. Research in Veterinary Science, 91(3), e31–e37. https://doi.org/https://doi.org/10.1016/j.rvsc.2011.01.012

Allison, D. G., and Lambert, P. A. (2024). Chapter 31 - Modes of action of antibacterial agents (Y.-W. Tang, M. Y. Hindiyeh, D. Liu, A. Sails, P. Spearman, & J.-R. B. T.-M. M. M. (Third E. Zhang (eds.); pp. 597–614). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818619-0.00133-7

Ann-Britt, S., Margareth, S., Ireny, A. N., Gabriela, M. R., Aysha, A., and Michaela, W. (2024). Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: a phenotypic analysis starter kit. Microbiology Spectrum, 12(3), e03275-23. https://doi.org/10.1128/spectrum.03275-23

Barros, J., Conceição, M., Neto, N., Costa, A., Siqueira, J., Basílio, I., and Souza, E. (2009). Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of Staphylococcus aureus strains isolated from foods. LWT - Food Science and Technology, 42(6), 1139–1143. https://doi.org/10.1016/j.lwt.2009.01.010

Benli, M., Yiğit, N., Geven, F., Güney, K., and Bingöl, Ü. (2008). Antimicrobial activity of endemic Crataegus tanacetifolia (Lam.) Pers and observation of the inhibition effect on bacterial cells. Cell Biochemistry and Function, 26(8), 844–851. https://doi.org/https://doi.org/10.1002/cbf.1515

Bhaumik, K. N., Spohn, R., Dunai, A., Daruka, L., Olajos, G., Zákány, F., Hetényi, A., Pál, C., and Martinek, T. A. (2024). Chemically diverse antimicrobial peptides induce hyperpolarization of the E. coli membrane. Communications Biology, 7(1), 1264. https://doi.org/10.1038/s42003-024-06946-4

Brötz-Oesterhelt, H., and Brunner, N. A. (2008). How many modes of action should an antibiotic have? Current Opinion in Pharmacology, 8(5), 564–573. https://doi.org/10.1016/j.coph.2008.06.008

Carson, C. ., Mee, B. ., and Riley, T. . (2002). Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined by Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Antimicrobial Agents and Chemotherapy, 46(6), 1914–1920. https://doi.org/10.1128/aac.46.6.1914-1920.2002

Chen, S., Qin, S., Li, R., Qu, Y., Ampomah-Wireko, M., Nininahazwe, L., Wang, M., Gao, C., and Zhang, E. (2024). Design, synthesis and antibacterial evaluation of low toxicity amphiphilic-cephalosporin derivatives. European Journal of Medicinal Chemistry, 268, 116293. https://doi.org/https://doi.org/10.1016/j.ejmech.2024.116293

Cushnie, T. P. T., O’Driscoll, N. H., and Lamb, A. J. (2016). Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cellular and Molecular Life Sciences, 73(23), 4471–4492. https://doi.org/10.1007/s00018-016-2302-2

Dalhoff, A. (2021). Selective toxicity of antibacterial agents—still a valid concept or do we miss chances and ignore risks? Infection, 49(1), 29–56. https://doi.org/10.1007/s15010-020-01536-y

de León, L., López, M. R., and Moujir, L. (2010). Antibacterial properties of zeylasterone, a triterpenoid isolated from Maytenus blepharodes, against Staphylococcus aureus. Microbiological Research, 165(8), 617–626. https://doi.org/https://doi.org/10.1016/j.micres.2009.12.004

Devi, K. P., Nisha, S. A., Sakthivel, R., and Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107–115. https://doi.org/https://doi.org/10.1016/j.jep.2010.04.025

Dörr, T. (2021). Understanding tolerance to cell wall–active antibiotics. Annals of the New York Academy of Sciences, 1496(1), 35–58. https://doi.org/https://doi.org/10.1111/nyas.14541

Figueroa-Cuilan, W. M., Randich, A. M., Dunn, C. M., Santiago-Collazo, G., Yowell, A., and Brown, P. J. B. (2021). Diversification of LytM Protein Functions in Polar Elongation and Cell Division of Agrobacterium tumefaciens. Frontiers in Microbiology, 12. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.729307

Fleury, B., Kelley, W. L., Lew, D., Götz, F., Proctor, R. A., and Vaudaux, P. (2009). Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures. BMC Microbiology, 9(1), 76. https://doi.org/10.1186/1471-2180-9-76

Friedrich, C. L., Moyles, D., Beveridge, T. J., and Hancock, R. E. (2000). Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrobial Agents and Chemotherapy, 44(8), 2086–2092. https://doi.org/10.1128/AAC.44.8.2086-2092.2000

Gauri, S. S., Mandal, S. M., Pati, B. R., and Dey, S. (2011). Purification and structural characterization of a novel antibacterial peptide from Bellamya bengalensis: activity against ampicillin and chloramphenicol resistant Staphylococcus epidermidis. Peptides, 32(4), 691–696. https://doi.org/10.1016/j.peptides.2011.01.014

Gray, D. A., Wang, B., Sidarta, M., Cornejo, F. A., Wijnheijmer, J., Rani, R., Gamba, P., Turgay, K., Wenzel, M., Strahl, H., and Hamoen, L. W. (2024). Membrane depolarization kills dormant Bacillus subtilis cells by generating a lethal dose of ROS. Nature Communications, 15(1), 6877. https://doi.org/10.1038/s41467-024-51347-0

Hanaki, H., Kuwahara-Arai, K., Boyle-Vavra, S., Daum, R. S., Labischinski, H., and Hiramatsu, K. (1998). Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. The Journal of Antimicrobial Chemotherapy, 42(2), 199–209. https://doi.org/10.1093/jac/42.2.199

Herbert, S., Barry, P., and Novick, R. P. (2001). Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infection and Immunity, 69(5), 2996–3003. https://doi.org/10.1128/IAI.69.5.2996-3003.2001

Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics, 2(1), 343–372. https://doi.org/10.1146/annurev.genom.2.1.343

Idid, S., Saad, S., and Susanti, D. (2024). Bioassay-Guided Isolation of Antimicrobial Compounds from Marine Sponge Neopetrosia exigua. Journal of Basic and Applied Research in Biomedicine, 10(1 SE-Original Article), 50–58. https://doi.org/10.51152/jbarbiomed.v10i1.235

Imada, A., Nozaki, Y., Kawashima, F., and Yoneda, M. (1977). Regulation of glucosamine utilization in Staphylococcus aureus and Escherichia coli. Journal of General Microbiology, 100(2), 329–337. https://doi.org/10.1099/00221287-100-2-329

Ismail, B. B., Wang, W., Ayub, K. A., Guo, M., and Liu, D. (2024). Advances in microscopy-based techniques applied to the antimicrobial resistance of foodborne pathogens. Trends in Food Science & Technology, 152, 104674. https://doi.org/https://doi.org/10.1016/j.tifs.2024.104674

Joshi, S., Bisht, G. S., Rawat, D. S., Kumar, A., Kumar, R., Maiti, S., and Pasha, S. (2010). Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Biochimica et Biophysica Acta, 1798(10), 1864–1875. https://doi.org/10.1016/j.bbamem.2010.06.016

Kawai, Y., Kawai, M., Mackenzie, E. S., Dashti, Y., Kepplinger, B., Waldron, K. J., and Errington, J. (2023). On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nature Communications, 14(1), 4123. https://doi.org/10.1038/s41467-023-39723-8

Keller, M. R., and Dörr, T. (2023). Chapter Four - Bacterial metabolism and susceptibility to cell wall-active antibiotics. In R. K. Poole & D. J. B. T.-A. in M. P. Kelly (Eds.), Advances in Microbial Physiology (Vol. 83, pp. 181–219). Academic Press. https://doi.org/https://doi.org/10.1016/bs.ampbs.2023.04.002

Kumar, G., and Engle, K. (2023). Natural products acting against S. aureus through membrane and cell wall disruption. Natural Product Reports, 40(10), 1608–1646. https://doi.org/10.1039/D2NP00084A

Lorian, V. (1999). Modes of Action of Antibiotics and Bacterial Structure: Bacterial Mass Versus their Numbers. In Handbook of Animal Models of Infection (pp. 105–116). Elsevier.

Mani, N., Tobin, P., and Jayaswal, R. K. (1993). Isolation and characterization of autolysis-defective mutants of Staphylococcus aureus created by Tn917-lacZ mutagenesis. Journal of Bacteriology, 175(5), 1493–1499. https://doi.org/10.1128/jb.175.5.1493-1499.1993

Moo, C.-L., Osman, M. A., Yang, S.-K., Yap, W.-S., Ismail, S., Lim, S.-H.-E., Chong, C.-M., and Lai, K.-S. (2021). Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Scientific Reports, 11(1), 20824. https://doi.org/10.1038/s41598-021-00249-y

Müller, A., Wenzel, M., Strahl, H., Grein, F., Saaki, T. N. V, Kohl, B., Siersma, T., Bandow, J. E., Sahl, H.-G., Schneider, T., and Hamoen, L. W. (2016). Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences, 113(45), E7077–E7086. https://doi.org/10.1073/pnas.1611173113

Nikola, O., Diana, S., and Shiladitya, B. (2022). Antibiotic Resistance via Bacterial Cell Shape-Shifting. MBio, 13(3), e00659-22. https://doi.org/10.1128/mbio.00659-22

Nostro, A., Bisignano, G., Angela Cannatelli, M., Crisafi, G., Paola Germanò, M., and Alonzo, V. (2001). Effects of Helichrysum italicum extract on growth and enzymatic activity of Staphylococcus aureus. International Journal of Antimicrobial Agents, 17(6), 517–520. https://doi.org/10.1016/s0924-8579(01)00336-3

Novák, L., Zubáčová, Z., Karnkowska, A., Kolisko, M., Hroudová, M., Stairs, C. W., Simpson, A. G. B., Keeling, P. J., Roger, A. J., Čepička, I., and Hampl, V. (2016). Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evolutionary Biology, 16(1), 197. https://doi.org/10.1186/s12862-016-0771-4

Panda, G., Dash, S., and Sahu, S. K. (2022). Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. In Membranes (Vol. 12, Issue 10). https://doi.org/10.3390/membranes12100914

Parthasarathi, S., Chaudhury, A., Swain, A., and Basu, J. K. (2025). Microscopy Insights as an Invaluable Tool for Studying Antimicrobial Interactions with Bacterial Membranes. ChemistrySelect, 10(21), e02345. https://doi.org/https://doi.org/10.1002/slct.202502345

Pols, T., Singh, S., Deelman-Driessen, C., Gaastra, B. F., and Poolman, B. (2021). Enzymology of the pathway for ATP production by arginine breakdown. The FEBS Journal, 288(1), 293–309. https://doi.org/10.1111/febs.15337

Priyamvada, P., Debroy, R., Anbarasu, A., and Ramaiah, S. (2022). A comprehensive review on genomics, systems biology and structural biology approaches for combating antimicrobial resistance in ESKAPE pathogens: computational tools and recent advancements. World Journal of Microbiology and Biotechnology, 38(9), 153. https://doi.org/10.1007/s11274-022-03343-z

Reinicke, B., Blümel, P., and Giesbrecht, P. (1983). Reduced degradability by lysozyme of staphylococcal cell walls after chloramphenicol treatment. Archives of Microbiology, 135(2), 120–124. https://doi.org/10.1007/BF00408020

Ren, F., Li, Y., Chen, W., Chen, W., Chen, H., and Zhang, M. (2024). Antimicrobial mechanism of linalool against Vibrio parahaemolyticus and its application in black tiger shrimp (Penaeus monodon). Food Bioscience, 60, 104283. https://doi.org/https://doi.org/10.1016/j.fbio.2024.104283

Reslane, I., Watson, G. F., Handke, L. D., and Fey, P. D. (2024). Regulatory dynamics of arginine metabolism in Staphylococcus aureus. Biochemical Society Transactions, 52(6), 2513–2523. https://doi.org/10.1042/BST20240710

Segovia, R., Solé, J., Marqués, A. M., Cajal, Y., and Rabanal, F. (2021). Unveiling the Membrane and Cell Wall Action of Antimicrobial Cyclic Lipopeptides: Modulation of the Spectrum of Activity. In Pharmaceutics (Vol. 13, Issue 12). https://doi.org/10.3390/pharmaceutics13122180

Sharma, V., Das, R., Mehta, D. K., Sharma, D., Aman, S., and Khan, M. U. (2025). Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Molecular Diversity, 29(1), 711–737. https://doi.org/10.1007/s11030-024-10862-4

Singh, S. B., and Barrett, J. F. (2006). Empirical antibacterial drug discovery—foundation in natural products. Biochemical Pharmacology, 71(7), 1006–1015. https://doi.org/https://doi.org/10.1016/j.bcp.2005.12.016

Sladić, D., and Gasić, M. J. (2006). Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules (Basel, Switzerland), 11(1), 1–33. https://doi.org/10.3390/11010001

Stautz, J., Hellmich, Y., Fuss, M. F., Silberberg, J. M., Devlin, J. R., Stockbridge, R. B., and Hänelt, I. (2021). Molecular Mechanisms for Bacterial Potassium Homeostasis. Journal of Molecular Biology, 433(16), 166968. https://doi.org/https://doi.org/10.1016/j.jmb.2021.166968

Stefaniak, J., Michał G., N., Marek, W., Sławomir, M., and and Skwarecki, A. S. (2022). Inhibitors of glucosamine-6-phosphate synthase as potential antimicrobials or antidiabetics – synthesis and properties. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1928–1956. https://doi.org/10.1080/14756366.2022.2096018

te Winkel, J. D., Gray, D. A., Seistrup, K. H., Hamoen, L. W., and Strahl, H. (2016). Analysis of Antimicrobial-Triggered Membrane Depolarization Using Voltage Sensitive Dyes. Frontiers in Cell and Developmental Biology, 4. https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2016.00029

Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima, H., and Inoue, Y. (2007). Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules (Basel, Switzerland), 12(2), 139–148. https://doi.org/10.3390/12020139

Ul Haq, I., Rafael, P. V., William Gustavo, L., Maria Elena, de L., and and Krukiewicz, K. (2024). Antimicrobial polymers: elucidating the role of functional groups on antimicrobial activity. Arab Journal of Basic and Applied Sciences, 31(1), 325–344. https://doi.org/10.1080/25765299.2024.2366543

Ulvatne, H., Samuelsen, Ø., Haukland, H. H., Krämer, M., and Vorland, L. H. (2004). Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiology Letters, 237(2), 377–384. https://doi.org/10.1016/j.femsle.2004.07.001

van Teeseling, M. C. F., de Pedro, M. A., and Cava, F. (2017). Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Frontiers in Microbiology, 8. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.01264

Vestergaard, M., Bald, D., and Ingmer, H. (2022). Targeting the ATP synthase in bacterial and fungal pathogens: beyond Mycobacterium tuberculosis. Journal of Global Antimicrobial Resistance, 29, 29–41. https://doi.org/https://doi.org/10.1016/j.jgar.2022.01.026

Zhao, W., Chengwei, Y., Ning, Z., Yuanyuan, P., Ying, M., Keru, G., Xia, L., Xiaohui, L., Xijian, L., Yumin, L., Songkai, L., and and Zhao, L. (2023). Menthone Exerts its Antimicrobial Activity Against Methicillin Resistant Staphylococcus aureus by Affecting Cell Membrane Properties and Lipid Profile. Drug Design, Development and Therapy, 17(null), 219–236. https://doi.org/10.2147/DDDT.S384716

Zheng, X., Marsman, G., Lacey, K. A., Chapman, J. R., Goosmann, C., Ueberheide, B. M., and Torres, V. J. (2021). The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nature Communications, 12(1), 6193. https://doi.org/10.1038/s41467-021-26517-z

Zhou, K., Zhou, W., Li, P., Liu, G., Zhang, J., and Dai, Y. (2008). Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control, 19(8), 817–822. https://doi.org/https://doi.org/10.1016/j.foodcont.2007.08.008

Downloads

Published

2025-08-26

Data Availability Statement

All data generated are represented in this manuscript.

How to Cite

Dual Action of Avarol Quinone Terpenoid: Disrupting Cell Wall and Membrane Integrity in Staphylococcus aureus. (2025). Journal of Basic and Applied Research in Biomedicine, 11(1), 20-29. https://doi.org/10.51152/jbarbiomed.v11i1.249

Similar Articles

1-10 of 144

You may also start an advanced similarity search for this article.