Computed Tomography–Based Quantitative Morphometry Reveals Distinct Airway Remodelling in COVID-19 versus Community-Acquired Pneumonia
DOI:
https://doi.org/10.51152/jbarbiomed.v11i1.254Keywords:
COVID-19, airway remodelling, computed tomography, bronchial geometry, pneumoniaAbstract
Purpose: To quantitatively characterize airway structural changes in COVID-19 and compare them to those observed in community-acquired pneumonia (CAP), using computed tomography (CT)-based Morphometry. The study aims to evaluate whether COVID-19 and CAP produce distinct patterns of airway remodelling across multiple geometric metrics. Materials and methods: High-resolution chest CT scans from 80 COVID-19 patients (stratified into low- and high-severity subgroups), 38 CAP patients, and 28 healthy controls were analysed. Airway parameters—hydraulic diameter (Dh (mm)), hydraulic ratio (Xh), airway circularity (Cr), and airway thickness (TA (mm))—were measured across the first 5–6 bronchial generations using 3D reconstruction and geodesic labelling. Statistical comparisons employed Kruskal–Wallis and regression analyses. Results: COVID-19 exhibited proximal airway enlargement but distal narrowing, contrasting with CAP’s uniform reduction in airway efficiency (p < 0.01). Xh gradients revealed compensatory adaptation in COVID-19’s major airways (steeper slope in severe cases, p = 0.013) but significant distal dysfunction (−12% Xh vs. CAP, p < 0.001). Circularity showed focal geometric distortion in COVID-19 versus CAP’s homogeneous expansion (p < 0.001). TA (mm) analysis identified diffuse thinning in COVID-19 (vs. CAP’s mild thickening, p = 0.189), with superimposed focal thromboinflammatory thickenings. Conclusions: COVID-19 and CAP induce fundamentally different patterns of airway remodelling. COVID-19 is associated with proximal airway dilation and disrupted distal tapering, whereas CAP results in uniform narrowing. These morphometric profiles may contribute to differences in airflow limitation and ventilation–perfusion mismatch, which could inform disease-specific monitoring, prognostication, and selection of therapeutic strategies. Future research should explore the relationship between these structural signatures and clinical outcomes, including recovery trajectory and long-term pulmonary function.
References
Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., & Tzankov, A. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. New England Journal of Medicine, 383(2), 120-128. https://doi.org/https://doi.org/10.1056/nejmoa2015432
Afshar, P., Heidarian, S., Enshaei, N., Naderkhani, F., Rafiee, M. J., Oikonomou, A., Fard, F. B., Samimi, K., Plataniotis, K. N., & Mohammadi, A. (2021). COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning. Scientific Data, 8(1), 121. https://doi.org/10.1038/s41597-021-00900-3
Aghasafari, P., George, U., & Pidaparti, R. (2019). A review of inflammatory mechanism in airway diseases. Inflammation Research, 68(1), 59-74. https://doi.org/https://doi.org/10.1007/s00011-018-1191-2
Bansal, M. (2020). Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 247-250. https://doi.org/https://doi.org/10.1016/j.dsx.2020.03.013
Belli, S., Prince, I., Savio, G., Paracchini, E., Cattaneo, D., Bianchi, M., Masocco, F., Bellanti, M. T., & Balbi, B. (2021). Airway clearance techniques: the right choice for the right patient. Frontiers in medicine, 8, 544826. https://doi.org/https://doi.org/10.3389/fmed.2021.544826
Caruso, D., Guido, G., Zerunian, M., Polidori, T., Lucertini, E., Pucciarelli, F., Polici, M., Rucci, C., Bracci, B., & Nicolai, M. (2021). Post-acute sequelae of COVID-19 pneumonia: six-month chest CT follow-up. Radiology, 301(2), E396-E405. https://doi.org/https://doi.org/10.1148/radiol.2021210834
Choi, S., Hoffman, E. A., Wenzel, S. E., Castro, M., Fain, S., Jarjour, N., Schiebler, M. L., Chen, K., & Lin, C. L. (2017). Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J Allergy Clin Immunol, 140(3), 690-700.e698. https://doi.org/10.1016/j.jaci.2016.11.053
Choi, S., Hoffman, E. A., Wenzel, S. E., Castro, M., Fain, S. B., Jarjour, N. N., Schiebler, M. L., Chen, K., & Lin, C. L. (2015). Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol (1985), 118(10), 1286-1298. https://doi.org/10.1152/japplphysiol.01094.2014
Colombi, D., Petrini, M., Risoli, C., Mangia, A., Milanese, G., Silva, M., Franco, C., Sverzellati, N., & Michieletti, E. (2023). Quantitative CT at Follow-Up of COVID-19 Pneumonia: Relationship with Pulmonary Function Tests. Diagnostics, 13(21), 3328. https://doi.org/https://doi.org/10.3390/diagnostics13213328
Cozzi, D., Cavigli, E., Moroni, C., Smorchkova, O., Zantonelli, G., Pradella, S., & Miele, V. (2021). Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19. Japanese journal of radiology, 39(8), 721-732. https://doi.org/https://doi.org/10.1007/s11604-021-01120-w
D’Arena, G., Penna, A. L., Crocamo, A., Sguazzo, F., Viceconti, R., Barlotti, V., & Gambardella, M. (2021). Heterogeneity of clinical and radiological findings of COVID-19. Postgraduate Medical Journal, 97(1146), 268-269. https://doi.org/https://doi.org/10.1136/postgradmedj-2020-137901
Deshpande, C. (2020). Thromboembolic findings in COVID-19 autopsies: pulmonary thrombosis or embolism? Annals of internal medicine, 173(5), 394-395. https://doi.org/https://doi.org/10.7326/m20-3255
Dhochak, N., Singhal, T., Kabra, S., & Lodha, R. (2020). Pathophysiology of COVID-19: why children fare better than adults? The Indian Journal of Pediatrics, 87(7), 537-546. https://doi.org/https://doi.org/10.1007/s12098-020-03322-y
Dournes, G. (2025). Quantitative CT Imaging of Chronic Airway Diseases. In Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/174_2025_606
Eskandari, M., Kuschner, W. G., & Kuhl, E. (2015). Patient-Specific Airway Wall Remodeling in Chronic Lung Disease. Ann Biomed Eng, 43(10), 2538-2551. https://doi.org/10.1007/s10439-015-1306-7
Feragen, A., Petersen, J., Owen, M., Lo, P., Thomsen, L. H., Wille, M. M. W., Dirksen, A., & Bruijne, M. d. (2015). Geodesic Atlas-Based Labeling of Anatomical Trees: Application and Evaluation on Airways Extracted From CT. IEEE Transactions on Medical Imaging, 34(6), 1212-1226. https://doi.org/10.1109/TMI.2014.2380991
Franquet, T. (2011). Imaging of pulmonary viral pneumonia. Radiology, 260(1), 18-39. https://doi.org/https://doi.org/10.1148/radiol.11092149
Frija-Masson, J., Bancal, C., Plantier, L., Benzaquen, H., Mangin, L., Penaud, D., Arnoult, F., Flamant, M., & d’Ortho, M.-P. (2021). Alteration of diffusion capacity after SARS-CoV-2 infection: a pathophysiological approach. Frontiers in Physiology, 12, 624062. https://doi.org/https://doi.org/10.3389/fphys.2021.624062
Gattinoni, L., Chiumello, D., Caironi, P., Busana, M., Romitti, F., Brazzi, L., & Camporota, L. (2020). COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Medicine, 46(6), 1099-1102. https://doi.org/10.1007/s00134-020-06033-2
Goodwill, A. G., Dick, G. M., Kiel, A. M., & Tune, J. D. (2017). Regulation of Coronary Blood Flow. Compr Physiol, 7(2), 321-382. https://doi.org/10.1002/cphy.c160016
Gorman, E., Connolly, B., Couper, K., Perkins, G. D., & McAuley, D. F. (2021). Non-invasive respiratory support strategies in COVID-19. The Lancet Respiratory Medicine, 9(6), 553-556. https://doi.org/https://doi.org/10.1016/s2213-2600(21)00168-5
Gosangi, B., Rubinowitz, A. N., Irugu, D., Gange, C., Bader, A., & Cortopassi, I. (2022). COVID-19 ARDS: a review of imaging features and overview of mechanical ventilation and its complications. Emergency radiology, 29(1), 23-34. https://doi.org/https://doi.org/10.1007/s10140-021-01976-5
Han, X., Fan, Y., Alwalid, O., Li, N., Jia, X., Yuan, M., Li, Y., Cao, Y., Gu, J., & Wu, H. (2021). Six-month follow-up chest CT findings after severe COVID-19 pneumonia. Radiology, 299(1), E177-E186. https://doi.org/https://doi.org/10.1148/radiol.2021203153
Haseli, S., Khalili, N., Bakhshayeshkaram, M., Sanei Taheri, M., & Moharramzad, Y. (2020). Lobar Distribution of COVID-19 Pneumonia Based on Chest Computed Tomography Findings; A Retrospective Study. Arch Acad Emerg Med, 8(1), e55.
Helmrich, E., Decker, L., Adolphi, N., & Makino, Y. (2020). Postmortem CT lung findings in decedents with Covid-19: a review of 14 decedents and potential triage implications. Forensic Imaging, 23, 200419. https://doi.org/https://doi.org/10.1016/j.fri.2020.200419
Ibrahim, G., & Hassan, A. (2022). CT-based Analysis of Vascular Tree Abnormalities in Different Phenotypes of COVID-19 Pneumonia. Int. J. Adv. Sci. Eng. Inf. Technol., 12(3), 1215–1221. https://doi.org/https://doi.org/10.18517/ijaseit.12.3.12579
Jia, X., Han, X., Cao, Y., Fan, Y., Yuan, M., Li, Y., Gu, J., Zheng, Y., Wang, L., & Qu, Y. (2022). Quantitative inspiratory–expiratory chest CT findings in COVID-19 survivors at the 6-month follow-up. Scientific Reports, 12(1), 7402. https://doi.org/https://doi.org/10.1038/s41598-022-11237-1
Karakasis, P., Nasoufidou, A., Sagris, M., Fragakis, N., & Tsioufis, K. (2024). Vascular Alterations Following COVID-19 Infection: A Comprehensive Literature Review. Life (Basel), 14(5). https://doi.org/10.3390/life14050545
Kuo, W., Perez-Rovira, A., Tiddens, H., & de Bruijne, M. (2020). Airway tapering: an objective image biomarker for bronchiectasis. Eur Radiol, 30(5), 2703-2711. https://doi.org/10.1007/s00330-019-06606-w
Long, M. E., Mallampalli, R. K., & Horowitz, J. C. (2022). Pathogenesis of pneumonia and acute lung injury. Clinical Science, 136(10), 747-769. https://doi.org/https://doi.org/10.1042/cs20210879
Louis, D. W., Saad, M., Vijayakumar, S., Ilyas, S., Kokkirala, A., & Aronow, H. D. (2023). The cardiovascular manifestations of COVID-19. Heart Failure Clinics, 19(2), 153. https://doi.org/https://doi.org/10.1016/j.hfc.2022.08.001
Maghsoudi-Ganjeh, M., Sattari, S., & Eskandari, M. (2021). Mechanical behavior of the airway wall in respiratory disease. Current Opinion in Physiology, 22, 100445. https://doi.org/https://doi.org/10.1016/j.cophys.2021.05.008
Mahdavi, M. M. B., Arabfard, M., Rafati, M., & Ghanei, M. (2023). A computer-based analysis for identification and quantification of small airway disease in lung computed tomography images: a comprehensive review for radiologists. Journal of Thoracic Imaging, 38(1), W1-W18. https://doi.org/https://doi.org/10.1097/rti.0000000000000683
Meyerholz, D. K., & Reznikov, L. R. (2022). Influence of SARS-CoV-2 on airway mucus production: A review and proposed model. Vet Pathol, 59(4), 578-585. https://doi.org/10.1177/03009858211058837
Ortiz-Puerta, D., Diaz, O., Retamal, J., & Hurtado, D. E. (2023). Morphometric analysis of airways in pre-COPD and mild COPD lungs using continuous surface representations of the bronchial lumen. Frontiers in Bioengineering and Biotechnology, 11, 1271760. https://doi.org/https://doi.org/10.3389/fbioe.2023.1271760
Park, H. J., Lee, S. M., Choe, J., Lee, S. M., Kim, N., Lee, J. S., Oh, Y. M., & Seo, J. B. (2019). Prediction of Treatment Response in Patients with Chronic Obstructive Pulmonary Disease by Determination of Airway Dimensions with Baseline Computed Tomography. Korean J Radiol, 20(2), 304-312. https://doi.org/10.3348/kjr.2018.0204
Patil, S., Tandel, N., Kasture, L., & Gondhali, G. (2023). Radiological patterns integration with duration of illness in COVID-19 pneumonia as ‘evolved’and ‘evolving’radiological phenotypes: a single center experience. Journal of Medicine, 24(2), 71-81. https://doi.org/https://doi.org/10.3329/jom.v24i2.67268
Ramakrishnan, K., Kumaran, M., Townsend, R., & Weir, M. (2021). Clinical advances in the evaluation of patients with excessive central airway collapse: a narrative review. Journal of Visualized Surgery, 8. https://doi.org/https://doi.org/10.21037/jovs-21-6
Roig-Marín, N. (2024). Ground-glass nodules in the lungs of COVID-19 patients. In Management, Body Systems, and Case Studies in COVID-19 (pp. 237-244). Elsevier.
Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet infectious diseases, 20(4), 425-434. https://doi.org/https://doi.org/10.1016/s1473-3099(20)30086-4
Swenson, K. E., Ruoss, S. J., & Swenson, E. R. (2021). The pathophysiology and dangers of silent hypoxemia in COVID-19 lung injury. Annals of the American Thoracic Society, 18(7), 1098-1105. https://doi.org/https://doi.org/10.1513/annalsats.202011-1376cme
Weatherald, J., Parhar, K. K. S., Al Duhailib, Z., Chu, D. K., Granholm, A., Solverson, K., Lewis, K., Møller, M. H., Alshahrani, M., & Belley-Cote, E. (2022). Efficacy of awake prone positioning in patients with covid-19 related hypoxemic respiratory failure: systematic review and meta-analysis of randomized trials. Bmj, 379. https://doi.org/https://doi.org/10.1136/bmj-2022-071966
Weerakkody, S., Arina, P., Glenister, J., Cottrell, S., Boscaini-Gilroy, G., Singer, M., & Montgomery, H. E. (2022). Non-invasive respiratory support in the management of acute COVID-19 pneumonia: considerations for clinical practice and priorities for research. The Lancet Respiratory Medicine, 10(2), 199-213. https://doi.org/https://doi.org/10.1016/S2213-2600(21)00414-8
Xu, J., Liang, Z., Jian, W., Li, J., Tang, G., Mo, X., Zhang, D., Zheng, J., Qian, Y., Liu, J., & Li, S. (2021). Changes of quantitative CT-based airway wall dimensions in patients with COVID-19 during early recovery. J Thorac Dis, 13(3), 1517-1530. https://doi.org/10.21037/jtd-20-2790
Yu, W., Shi, Y., Zheng, Q., Chen, J., Zhang, X., Chen, A., Yu, Z., Zhou, W., Lin, L., Zheng, L., Ye, H., & Li, Y. (2024). Comparison between community-acquired pneumonia and post-obstructive pneumonia associated with endobronchial tumors. BMC Pulm Med, 24(1), 589. https://doi.org/10.1186/s12890-024-03409-8
Zaremba, S., Miller, A. J., Ovrom, E. A., Senefeld, J. W., Wiggins, C. C., Dominelli, P. B., Ganesh, R., Hurt, R. T., Bartholmai, B. J., Welch, B. T., Ripoll, J. G., Joyner, M. J., & Ramsook, A. H. (2024). Increased luminal area of large conducting airways in patients with COVID-19 and post-acute sequelae of COVID-19: a retrospective case-control study. J Appl Physiol (1985), 137(5), 1168-1174. https://doi.org/10.1152/japplphysiol.00573.2024
Downloads
Published
Data Availability Statement
All data generated are represented in this manuscript.
Issue
Section
License
Copyright (c) 2025 Gihad Ibrahim

This work is licensed under a Creative Commons Attribution 4.0 International License.