Antibactrial Activity of Asteriscus graveolens Methanolic Extract: Synergistic Effect with Fungal Mediated Nanoparticles against Some Enteric Bacterial Human Pathogens

Main Article Content

Ibtihal ALrawashdeh
Haitham Qaralleh
Muhamad Al-limoun
Khaled Khleifat


Antibactrial activity of Asteriscus graveolens methanolic extract and its synergy effect with fungal mediated silver nanoparticles (AgNPs) against some enteric bacterial human pathogen was conducted. Silver nanoparticles were synthesized by the fungal strain namely Tritirachium oryzae W5H as reported early. In this study, MICs of AgNPs against E. aerogenes, Salmonella sp., E. coli and C. albicans in order were 2.13, 19.15, 0.08 and 6.38 µg/mL, respectively, while the MICs of A. graveolens ethanolic extract against the same bacteria were 4, 366, <3300 and 40 µg/mL, respectively. The MIC values at concentration less than 19.15 and 40 µg/ml indicating the potent bacteriostatic effect of AgNPs and A. graveolens ethanolic extract. Increasing in IFA was reported when Nitrofurantion and Trimethoprim were combined with Etoh extract with maximum increase in IFA by 6 and 12 folds for, respectively. Also, 10 folds increasing in IFA was reported when trimethoprim was combined with AgNPs: Etoh extract. But, there were no synergistic effect between the antifungal agents (Caspofungin and Micafungin) combined with AgNPs and or A. graveolens ethanolic extract against C. albicans. The potent synergistic effect of A. graveolens ethanolic extract and/or NPs with the conventional antibiotics is novel in inhibiting antibiotics resistant bacteria. In this study, remarkable increasing in the antibacterial activity, when the most resistant antibiotics combined with A. graveolens ethanolic extract and/or NPs was reported.


Download data is not yet available.


Metrics Loading ...

Article Details



Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future microbiology, 6(8), 933-940.

Abboud, M. M., Saeed, H. A., Tarawneh, K. A., Khleifat, K. M., & Al Tarawneh, A. (2009). Copper uptake by Pseudomonas aeruginosa isolated from infected burn patients. Current microbiology, 59(3), 282-287.

Abboud, M. M., Aljundi, I. H., Khleifat, K. M., & Dmour, S. (2010). Biodegradation kinetics and modeling of whey lactose by bacterial hemoglobin VHb-expressing Escherichia coli strain. Biochemical Engineering Journal, 48(2), 166-172.

Al-limoun MO, Qaralleh, HN., Khleifat, KM., Al-Anber, M., Al-Tarawneh AA., Al-sharafa KY., Kailani, MH., Zaitoun, MA., Matar SA., Al-soub, T., (2019). “Culture Media Composition and Reduction Potential Optimization of Mycelia- free Filtrate for the Biosynthesis of Silver Nanoparticles Using the Fungus Tritrichum oryzae W5H”, Current Nanoscience15: 1.

Al-Asoufi, A., Khlaifat, A., Tarawneh, A., Alsharafa, K., Al-Limoun, M., & Khleifat, K. (2017). Bacterial quality of urinary tract infections in diabetic and non-diabetics of the population of Ma'an Province, Jordan. Pakistan J Biol Sci, 20, 179-88.

Althunibat, O. Y., Qaralleh, H., Al-Dalin, S. Y. A., Abboud, M., Khleifat, K., Majali, I. S., ... & Jaafraa, A. (2016). Effect of thymol and carvacrol, the major components of Thymus capitatus on the growth of Pseudomonas aeruginosa. J Pure Appl Microbiol, 10, 367-74.

?Ahmed, A. A., Ishak, M. S., Micheal, H. N., El-Ansari, M. A., & El-Sissi, H. I. (1991). Flavonoids of Asteriscus graveolens. Journal of Natural Products, 54(4), 1092-1093.

Aouissi, S., Mayer, D. C., & Ismaili, M. C. (2018). Structure of relative genus fields of cubic Kummer extensions. arXiv preprint arXiv:1808.04678.

Barapatre, A., Aadil, K. R., & Jha, H. (2016). Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresources and Bioprocessing, 3(1), 8.?

Bhainsa, K. C., & D'souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and surfaces B: Biointerfaces, 47(2), 160-164.?

Burda, C., Chen, X., Narayanan, R., & El-Sayed, M. A. (2005). Chemistry and properties of nanocrystals of different shapes. Chemical reviews, 105(4), 1025-1102.?

Dorau, B., Arango, R., & Green, F. (2004). An investigation into the potential of ionic silver as a wood preservative. In Proceedings from the Woodframe Housing Durability and Disaster Issues Conference: October 4-6, 2004... Las Vegas, Nevada, USA. Madison, WI: Forest Products Society, 2004: Pages 133-145.

Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), 1-24.?

Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 789-799.?

Tayeh, Z., Dudai, N., Schechter, A., Chalifa-Caspi, V., Barak, S., & Ofir, R. (2018). Molecular Mode of Action of Asteriscus graveolens as an Anticancer Agent. International journal of molecular sciences, 19(8), 2162.

Gibbons, S., Oluwatuyi, M., Veitch, N. C., & Gray, A. I. (2003). Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry, 62(1), 83-87.?

Gudikandula, K., Vadapally, P., & Charya, M. S. (2017). Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano, 2, 64-78.?

Guilger, M., Pasquoto-Stigliani, T., Bilesky-Jose, N., Grillo, R., Abhilash, P. C., Fraceto, L. F., & De Lima, R. (2017). Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Scientific Reports, 7, 44421.?

Guzman, M., Dille, J., & Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, biology and medicine, 8(1), 37-45.?

?Jaidev, L. R., & Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and surfaces B: Biointerfaces, 81(2), 430-43

Joanna, C., Marcin, L., Ewa, K., & Gra?yna, P. (2018). A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. Ecotoxicology, 27(3), 352-359.?

Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and environmental microbiology, 74(7), 2171-2178.?

Khleifat, K. M., Abboud, M. M., Al-Mustafa, A. H., & Al-Sharafa, K. Y. (2006a). Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of ?-galactosidase in Enterobacter aerogenes. Current microbiology, 53(4), 277.

Khleifat, K., Abboud, M., Al-Shamayleh, W., Jiries, A., & Tarawneh, K. (2006c). Effect of chlorination treatment on gram negative bacterial composition of recycled wastewater. Pak. J. Biol. Sci, 9, 1660-1668.

Khleifat, K. M., Matar, S. A., Jaafreh, M., Qaralleh, H., Al-limoun, M. O., & Alsharafa, K. Y. (2019). Essential Oil of Centaurea damascena Aerial Parts, Antibacterial and Synergistic Effect. Journal of Essential Oil Bearing Plants, 22(2), 356-367.

Khleifat, K. M., Sharaf, E. F., & Al-limoun, M. O. (2015). Biodegradation of 2-chlorobenzoic acid by enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediation Journal, 19(3), 207-217.

Khleifat, K. M., Abboud, M. M., & Al-Mustafa, A. H. (2006b). Effect of Vitreoscilla hemoglobin gene (vgb) and metabolic inhibitors on cadmium uptake by the heterologous host Enterobacter aerogenes. Process Biochemistry, 41(4), 930-934.

Khleifat, K., & Abboud, M. M. (2003). Correlation between bacterial haemoglobin gene (vgb) and aeration: their effect on the growth and ??amylase activity in transformed Enterobacter aerogenes. Journal of applied microbiology, 94(6), 1052-1058.

Khleifat, K. M., Halasah, R. A., Tarawneh, K. A., Halasah, Z., Shawabkeh, R., & Wedyan, M. A. (2010). Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. Int J Agr Biol, 12, 17-25.

Khleifat, K. M., Matar, S. A., Jaafreh, M., Qaralleh, H., Al-limoun, M. O., & Alsharafa, K. Y. (2019). Essential Oil of Centaurea damascena Aerial Parts, Antibacterial and Synergistic Effect. Journal of Essential Oil Bearing Plants, 22(2), 356-367.

Khleifat, K. M., Hanafy, A. M. M., & Al Omari, J. (2014). Prevalence and molecular diversity of Legionella pneumophila in domestic hot water systems of private apartments. British Microbiology Research Journal, 4(3), 306.

Khleifat, K. M., Al-Majali, I., Shawabkeh, R., & Tarawneh, K. (2007). Effect of carbon and nitrogen sources on the biodegradation of phenol by Klebsiella oxytoca and growth kinetic characteristics. Fresenius Environmental Bulletin, 16(5), 1-7.

Khleifat, K. M. (2007). Effect of substrate adaptation, carbon starvation and cell density on the biodegradation of phenol by Actinobacillus sp. Fresenius Environmental Bulletin, 16(7), 726-730.

?Kitching, M., Ramani, M., & Marsili, E. (2015). Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8: 904–917.?

Klan?nik, A., Piskernik, S., Jeršek, B., & Možina, S. S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of microbiological methods, 81(2), 121-126.?

Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., ... & Wang, L. (2011). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International journal of molecular sciences, 13(1), 466-476.?

Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., ... & Che, C. M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. JBIC Journal of Biological Inorganic Chemistry, 12(4), 527-534.?

Ma, L., Su, W., Liu, J. X., Zeng, X. X., Huang, Z., Li, W., & Tang, J. X. (2017). Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Materials Science and Engineering: C, 77, 963-971.?

Majali, I. S., Oran, S. A., Khaled, M. K., Qaralleh, H., Rayyan, W. A., & Althunibat, O. Y. (2015). Assessment of the antibacterial effects of Moringa peregrina extracts. African Journal of microbiology research, 9(51), 2410-2414.

Massa, N., Cantamessa, S., Novello, G., Ranzato, E., Martinotti, S., Pavan, M., ...& Bona, E. (2018). Antifungal activity of essential oils against azole-resistant and azole-susceptible Candida glabrata strains vaginal isolates. Canadian journal

Mekkawy, A. I., El-Mokhtar, M. A., Nafady, N. A., Yousef, N., Hamad, M. A., El-Shanawany, S. M., ... & Elsabahy, M. (2017). In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. International journal of nanomedicine, 12, 759.?

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.

Naqvi, S. Z. H., Kiran, U., Ali, M. I., Jamal, A., Hameed, A., Ahmed, S., & Ali, N. (2013). Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. International journal of nanomedicine, 8, 3187.?

Padalia, H., Moteriya, P., & Chanda, S. (2015). Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian Journal of Chemistry, 8(5), 732-741.?

Paná?ek, A., Kolá?, M., Ve?e?ová, R., Prucek, R., Soukupova, J., Kryštof, V., ... & Kvítek, L. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30(31), 6333-6340.?

Parthasarathy,Xiao, Y., Ma, B., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., ... & Ishii, Y. (2015). A? (1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nature structural & molecular biology, 22(6), 499.?

Pereira, L., Dias, N., Carvalho, J., Fernandes, S., Santos, C., & Lima, N. (2014). Synthesis, characterization and antifungal activity of chemically and fungal?produced silver nanoparticles against T richophyton rubrum. Journal of applied microbiology, 117(6),

Ramdane, F., Essid, R., Mkadmini, K., Hammami, M., Fares, N., Mahammed, M. H., ... & Hadj, M. D. O. (2017). Phytochemical composition and biological activities of Asteriscus graveolens (Forssk) extracts. Process Biochemistry, 56, 186-192.90, 494-507.

Qaralleh, H., Khleifat, K. M., Al-Limoun, M. O., Alzedaneen, F. Y., & Al-Tawarah, N. (2019). Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 025016.

Rahimi, G., Alizadeh, F., & Khodavandi, A. (2016). Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 15(2), 371-375.?

Rai, M., Paralikar, P., Jogee, P., Agarkar, G., Ingle, A. P., Derita, M., & Zacchino, S. (2017). Synergistic antimicrobial potential of essential oils in combination with nanoparticles: emerging trends and future perspectives. International Journal of Pharmaceutics, 519(1-2), 67-78.

Rajendran, A. T. V. R. U. A. A. (2012). A novel endophytic fungus Pestalotiopsis sp. inhabiting Pinus caneriensis with antibacterial and antifungal potential. Int J Adv Life Sci, 2, 1-7.?

Ramadane, T., & Souad, M. (2017). Towards a new approach in the teaching of the Holy Qur’an. International Journal oh Humanities and Social Science, 7(10), 143-152.?

Ramalingmam, P., Muthukrishnan, S., & Thangaraj, P. (2015). Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. J Nanosci Nanoeng, 1, 241-247.?

Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015.?

Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., ... & Kahlmeter, G. (2015). The global threat of antimicrobial resistance: science for intervention. New microbes and new infections, 6, 22-29.

Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food chemistry, 91(4), 621-632.?

Sanglard, D., Coste, A., & Ferrari, S. (2009). Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS yeast research, 9(7), 1029-1050.?

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 168-171.?

Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16(1), 14

Simon, J., Sun, H. Y., Leong, H. N., Barez, M. Y. C., Huang, P. Y., Talwar, D., & Wittayachanyapong, S. (2013). Echinocandins in invasive candidiasis. Mycoses, 56(6), 601-609.

Tarawneh, K. A., Halasah, Z. A., Khleifat, A. M., Batarseh, M. I., Khleifat, K. M., & Al-Mustafa, A. H. (2011). Evaluation of cefaclor oral suspensions stability using reversed phase high performance liquid chromatography and antimicrobial diffusion methods. Pakistan journal of pharmaceutical sciences, 24(3).

Tarawneh, K. A., Al?Tawarah, N. M., Abdel?Ghani, A. H., Al?Majali, A. M., & Khleifat, K. M. (2009). Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. Journal of basic microbiology, 49(3), 310-317.

Thangapandiyan, S., & Prema, P. (2012). Chemically fabricated silver nanoparticles enhances the activity of antibiotics against selected human bacterial pathogens. International Journal of Pharmaceutical Sciences and Research, 3(5), 1415.?

Verma, V. C., Kharwar, R. N., & Gange, A. C. (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine, 5(1), 33-40.?

Waghmare, S. R., Mulla, M. N., Marathe, S. R., & Sonawane, K. D. (2015). Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech, 5(1), 33-38.?

Yap, P. S. X., Yiap, B. C., Ping, H. C., & Lim, S. H. E. (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. The open microbiology journal, 8, 6.?

Znini, M., Bouklah, M., Majidi, L., Kharchouf, S., Aouniti, A., Bouyanzer, A., ... & Al-Deyab, S. S. (2011). Chemical composition and inhibitory effect of Mentha spicata essential oil on the corrosion of steel in molar hydrochloric acid. Int. J. Electrochem. Sci, 6(3), 691-704.?

Zeidan, R., Oran, S., Khleifat, K., & Matar, S. (2013). Antimicrobial activity of leaf and fruit extracts of Jordanian Rubus sanguineus Friv.(Rosaceae). African Journal of Microbiology Research, 7(44), 5114-5118.

Most read articles by the same author(s)