Biodegradation of Chlorobenzoic Acid Substitutes, Particularly, 2- Chlorobenzoic Acid by Aeromonas hydrophila

Main Article Content

Khaled Tarawneh
Farah AL-Quraishi
Haitham Qaralleh
Amjad Al Tarawneh
Muhamad Al-limoun
Khaled Khleifat


Bacterium Aeromonas hydrophila (A. hydrophila) was isolated from the Petra Wastewater Treatment Plant effluent in southern Jordan. It was identified by using morphological and biochemical characteristics. A. hydrophila was found to be able of using chlorobenzoate compounds as carbon and energy source. These capabilities were with different biodegradation rates (4- chlorobenzoic acid 5µM/hr, 3,4-dichlorobenzoic acid 15.5µM/hr, 2- chlorobenzoic acid 41µM/hr and 3- chlorobenzoic acid 65µM/hr). The degradation ability was monitored through the release of chloride, disappearance of the substrate and finally the growth of bacterial cells on these substrates. A. hydrophila dioxygenases physiologically induced by chlorobenzoic acid compounds, were analyzed for both ortho or meta ring-cleavage of these aromatic compounds. Only 1, 2-dioxygenase activity was detected which suggest that the cleavage is through the ortho pathway. The best results of degradation of 2-CBA compound were obtained with 3mM substrate concentration, 25ºC, pH 7and 200µl inoculum size. The carbon sources affected the 2-CBA degradation differently from that on chloride and cell mass production. Nitrogen sources used reduced the degradation activity of the 2-CBA as well as in the chlorine release from 2-CBA. However, the nitrogen source L-proline had a slight enhancement effect on the biodegradation between the 40-80h.


Download data is not yet available.


Metrics Loading ...

Article Details



Adriaens, P. and Focht, D. D. (1991b). cometabolism of 3,4Dichlorobenzoate by Acinetobacter sp. Strain 4-CB1. Applied and Environmental Microbiology. 57: 173-179.

Abboud, M. M., Khleifat, K. M., Batarseh, M., Tarawneh, K. A., Al-Mustafa, A., & Al-Madadhah, M. (2007). Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme and Microbial Technology, 41(4), 432-439.

Adriaens, P. E., Kohler-Staub, D. and Focht, D. D..(1989). Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4-di-chlorobiphenyl. Applied and Environmental Microbiology. 55: 887-892.

Adriaens, P., Focht, D. D. (1991a). Continuous co culture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp. in an aerobic reactor system. Environmental Science and Technology. 24: 1042-1049.

Althunibat OY, Qaralleh H, Al-Dalin SY, Abboud M, Khleifat K, Majali IS, Aldal'in HK, Rayyan WA, Jaafraa A (2016). Effect of thymol and carvacrol, the major components of Thymus capitatus on the growth of Pseudomonas aeruginosa. J Pure Appl Microbiol. 1;10:367-74.

Aljundi, IH., Khleifat, K.M., Khlaifat, AM., Ibrahim, AM, Tarawneh KA. (2010). Biodegradation of 2-chlorobenzoic acid by Klebsiella oxytoca: mathematical modeling and effect of some growth conditions. Indust. Eng. Chem. Res. 49 (16): 7159-7167.

Aljundi, I. H., & Khleifat, K. M. (2010). Biosorption of lead by E. coli strains expressingVitreoscilla hemoglobin: Isotherm modeling with two?and three?parameter models. Engineering in Life Sciences, 10(3), 225-232.

Alva, V. A., and Peyton, B. M. (2003). Phenol and Catechol Biodegradation by the Haloalkaliphile Halomonas campisalis: Influence of pH and Salinity. Environmental Science Technology. 37: 4397-4402.

Ampe, F., Leonard, D., Lindley, N. D. (1998). Repression of phenol catabolism by organic acids in Ralstonia eutropha. Applied and Environmental Microbiology. 64: 1-6.

Arensdorf, J. J. and Focht, D. D. (1994). Formation of chlorocatech meta cleavage products by a Pseudomonad during metabolism of monochlorbiphenyls. Applied and Environmental Microbiology. 60: 2884–2889.

Arensdorf, J. J., Focht, D. D. (1995). A meta cleavage pathway for 4 chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia. Applied and Environmental Microbiology. 61:443–447.

Asplund, G., and Grimvall, A. (1991). Organohalogens in Nature Environ. Science Technology. 25: 1346-1350.

Banta, G. and Kahlon, R. S.(2007). Dehalogenation of 4- Chlorobenzoic Acid by Pseudomonas isolates. Indian Journal of Microbiology. 47: 139–143.

Bugg, T. D., Sanvoisin, J., and Spence, E. L. (1997). Exploring the catalytic mechanism of the extradiol catechol dioxygenases. Biochemical Society Transactions. 25: 81-85.

Champagne, P. Van, Geel, P. J. and Parker, W. J. (1998). A proposed transient model for cometabolism in biofilm systems. Biotechnology and Bioengineering. 60: 541-550.

Dong-In Seo, Jai- Yun Lim, Young –Chang Kim, Kyung- Hee Min and Chi- Kyung Kim. (1997). Isolation of Pseudomonase sp. S-47 and Its Degradation of 4-Chlorobenzoic Acid. The Journal of Microbiology. 35: 188-192.

Dorn, E. and Knackmuss, H. J. (1978). Chemical structure and biodegradability of halogenated aromatic compounds: Two catechol 1, 2-dioxygenases from 3-chlorobenzoate-grown Pseudomonad. Journal of Biochemistry. 174: 73–84.

Field, J. A. and Alvarez, R. S. (2008). Microbial transformation of chlorinated benzoates. Review in Environmental Science Biotechnology .7: 191–210.

Fritsche, W. and Hofrichter, M. (2000). Aerobic degradation by microorganisms. Biotechnology.11b: 145-167.

Gottschalk, G., and Knackmuss, H. J. (1993). Bacteria and the biodegradation of chemicals achieved naturally by combination or by construction. Angewandt Chemistry International. 32:1398-1408.

Harayama, S., and Rekik, M. (1989). Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. Biological Chemistry. 264: 15328-15333.

Hickey, W. J. and Focht, D. D. (1990). Degradation of Mono-, Di-, and Trihalogenated Benzoic Acids by Pseudomonas aeruginosa JB2. Applied and Environmental Microbiology. 56: 3842-3850.

Khleifat, K. M., Hanafy, A. M. M., & Al Omari, J. (2014). Prevalence and molecular diversity of Legionella pneumophila in domestic hot water systems of private apartments. British Microbiology Research Journal, 4(3), 306.

Khleifat, K. M., Sharaf, E. F., & Al-limoun, M. O. (2015). Biodegradation of 2-chlorobenzoic acid by Enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediation Journal, 19(3), 207-217.

Khleifat, K.M., (2006a). Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme and microbial technology, 39(5): 1030-1035.

Khleifat, K.M., (2006b). Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochemistry, 41(9): 2010-2016.

Khleifat, K.M., (2006c). Biodegradation of sodium lauryl ether sulfate (SLES) by two different bacterial consortia. Current microbiology, 53(5): 444-448.

Khleifat, K. M. (2006d). Correlation Between Bacterial Hemoglobin and Carbon Sources: Their Effect on Copper Uptake by Transformed E. coli Strain ?DH5. Current microbiology, 52(1), 64-68.

Khleifat, K. M., Matar, S. A., Jaafreh, M., Qaralleh, H., Al-limoun, M. O., & Alsharafa, K. Y. (2019). Essential Oil of Centaurea damascena Aerial Parts, Antibacterial and Synergistic Effect. Journal of Essential Oil Bearing Plants, 22(2), 356-367.

Khleifat, K., & Abboud, M. M. (2003). Correlation between bacterial haemoglobin gene (vgb) and aeration: their effect on the growth and ??amylase activity in transformed Enterobacter aerogenes. Journal of applied microbiology, 94(6), 1052-1058.

Khleifat, K. M., Abboud, M. M., Al-Mustafa, A. H., & Al-Sharafa, K. Y. (2006a). Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of ?-galactosidase in Enterobacter aerogenes. Current microbiology, 53(4), 277.

Khleifat, KM., Tarawneh, KA., Wedyan MA., Al-Tarawneh, AA., Al Sharafa K (2008). Growth Kinetics and Toxicity of Enterobacter cloacae Grown on Linear Alkylbenzene Sulfonate as Sole Carbon Source. Curr. Microbiol. 57:364–370.

Khleifat, K. M., Abboud, M. M., & Al-Mustafa, A. H. (2006b). Effect of Vitreoscilla hemoglobin gene (vgb) and metabolic inhibitors on cadmium uptake by the heterologous host Enterobacter aerogenes. Process Biochemistry, 41(4), 930-934.

Khleifat, K. M., Nawayseh, K., Adjeroud, N. R., Khlaifat, A. M., Aljundi, I. H., & Tarawneh, K. A. (2009). Cadmium-resistance plasmid affected Cd+ 2 uptake more than Cd+ 2 adsorption in Klebsiella oxytoca. Bioremediation Journal, 13(4), 159-170.

Khleifat, K. M., Halasah, R. A., Tarawneh, K. A., Halasah, Z., Shawabkeh, R., & Wedyan, M. A. (2010). Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. Int J Agr Biol, 12, 17-25.

Khleifat, KM., (2007a). Effect of substrate adaptation, carbon starvation and cell density on the biodegradation of phenol by Actinobacillus sp. Fresenius Environ. Bull. 16 (7): 726-730.

Khleifat, K. M. (2007b). Biodegradation of phenol by Actinobacillus sp.: Mathematical interpretation and effect of some growth conditions. Bioremediation Journal, 11(3), 103-112.

Khleifat, K. M., Al-Majali, I., Shawabkeh, R., & Tarawneh, K. (2007). Effect of carbon and nitrogen sources on the biodegradation of phenol by Klebsiella oxytoca and growth kinetic characteristics. Fresenius Environmental Bulletin, 16(5), 1-7.

Leonard, D. and Lindley, N. D. (1998). Carbon and energy flux constraints in continuous cultures of Alcaligenes eutrophus grown on phenol. Microbiology .144: 241-8.

Leven, L. and Schnürer, A. (2005). Effect of temperature on biological degradation of phenols, benzoate and phthalates under methanogenic conditions. International Biodeterioration and Biodegradation 55: 153-160.

Lob, K. C., Tar, P. P. (2000). Effect of additional carbon sources on biodegradation of phenol. Bulletin of Environmental Contamination and Toxicology. 64: 756-63.

Loh, KC, Wang, SJ. (1998). Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation .8: 329-38.

Lowry, O. H., Rosebrough, N. J., Farr, A. C. and Randall, R. J. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry. 193: 265-273.

Majali, I. S., Oran, S. A., Khaled, M. K., Qaralleh, H., Rayyan, W. A., & Althunibat, O. Y. (2015). Assessment of the antibacterial effects of Moringa peregrina extracts. African Journal of microbiology research, 9(51), 2410-2414.

Margesin, R. and Schinner, F. (1997). Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiology Ecology. 24: 243-249.

Marks, Trevor S., Anthony, R. W. Smith, and Alan, V. Quirk.(1984). Degradation of 4-Chlorobenzoic Acid by Arthrobacter sp. Applied and Environmental Microbiology. 48: 1020-1025.

Mars, A. E., Kasberg, T., Kaschabek, S. R., van Agteren, M. H., Janssen, D. B., Reineke, W. (1997). Microbial degradation of chloroaromatics: Use of the meta-cleavage pathway for mineralization of chlorobenzene. Journal of Bacteriology. 179: 4530-4537.

Pieper, D. H., Stadler Fritzsche, K., Knackmuss H. J., and Timmis K. N. (1995). Formation of dimethylmuconolactones from dimethylphenols by Alcaligenes eutrophus JMP 134. Applied and Environmental Microbiology. 61: 2159–2165.

Popovic, N. Topic, E. Teskeredzí ic, I. Strunjak-Perovic and R. Cí ozí– Rakovac .(2000). Aeromonas hydrophila Isolated from Wild Fresh water Fish in Croatia. Veterinary Research Communications. 24 :371-377.

Chaudhry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiology and Molecular Biology Reviews, 55(1), 59-79.

Qaralleh, H., Khleifat, K. M., Al-Limoun, M. O., Alzedaneen, F. Y., & Al-Tawarah, N. (2019). Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 025016.

Sahm, H., Brunner, M., & Schoberth, S. M. (1986). Anaerobic degradation of halogenated aromatic compounds. Microbial ecology, 12(1), 147-153.

Schmidt, S., Cain, R. B., Rao, G. V., & Kirby, G. W. (1994). Isolation and identification of two novel butenolides as products of dimethylbenzoate metabolism by Rhodococcus rhodochrous N75. FEMS microbiology letters, 120(1-2), 93-98.

Shawabkeh, Reyad, Khleifat, Khaled M., Al-Majali, Ibrahim and Tarawneh Khaled. (2007). Rate of Biodegradation of Phenol by Klebsiella oxytoca in Minimal Medium and Nutrient Broth Conditions. Bioremediation Journal.11: 13-19.

Tarawneh, K. A., Halasah, Z. A., Khleifat, A. M., Batarseh, M. I., Khleifat, K. M., & Al-Mustafa, A. H. (2011). Evaluation of cefaclor oral suspensions stability using reversed phase high performance liquid chromatography and antimicrobial diffusion methods. Pakistan journal of pharmaceutical sciences, 24(3).

Topp, E., Crawford, R. L., & Hanson, R. S. (1988). Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degrading Flavobacterium sp. Appl. Environ. Microbiol., 54(10), 2452-2459.

Urgun-Demirtas, M., Pagilla, K. R., Stark, B. C., & Webster, D. (2003). Biodegradation of 2-chlorobenzoate by recombinant Burkholderia cepacia expressing Vitreoscilla hemoglobin under variable levels of oxygen availability. Biodegradation, 14(5), 357-365.

Vogt, C., Simon, D., Alfreider, A., & Babel, W. (2004). Microbial degradation of chlorobenzene under oxygen?limited conditions leads to accumulation of 3?chlorocatechol. Environmental Toxicology and Chemistry: An International Journal, 23(2), 265-270.

Zeidan, R., Oran, S., Khleifat, K., & Matar, S. (2013). Antimicrobial activity of leaf and fruit extracts of Jordanian Rubus sanguineus Friv.(Rosaceae). African Journal of Microbiology Research, 7(44), 5114-5118.

Yi, H. R., Min, K. H., Kim, C. K., & Ka, J. O. (2000). Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils. FEMS microbiology ecology, 31(1), 53-60.

Yun, Q. I., Lin, Z. H. A. O., Ojekunle, Z. O., & Xin, T. A. N. (2007). Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. Journal of Environmental Sciences, 19(3), 332-337.

Yuroff, S. A., Sabat, G., Hickey, J. W. (2003). Transporter mediated up take of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1. Applied and Environmental Microbiology. 69: 7401-7408.

Most read articles by the same author(s)