Potential Antimicrobial Activity of Marine Sponge Neopetrosia exigua

Main Article Content

Ibrahim Majali
Haitham Qaralleh
Syed Idid
Deny Susanti
Shahbudin Saad
Osama Althunibat


Neopetrosia exigua has received great attention in natural product chemistry. The diversity of N. exigua constituents has been demonstrated by the continued discovery of novel bioactive metabolites such as antimicrobial metabolites. In this study, in order to localise the active component of N. exigua biomass according to the polarity, a sequential gradient partition with different solvents (n-hexane, carbon tetrachloride, dichloromethane, n-butanol, and water) was performed to obtain fractions containing metabolites distributed according to their polarity. The antimicrobial activities of N. exigua fractions were then evaluated using disc diffusion and microdilution methods (influence on the growth curve, Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)). The results showed that the active metabolites were present in n-hexane, CH 2 Cl 2 , n-
BuOH, and water fractions. n-hexane, CH 2 Cl 2 , and n-BuOH fractions were the most effective fractions. Among microbes tested, Staphylococcus aureus was the most susceptible microbe evaluated. The obtained results are considered sufficient for further study to isolate the compounds represent the antimicrobial activity. 


Download data is not yet available.


Metrics Loading ...

Article Details

Journal of Basic And Applied Research


Bewley, C.A., Holland, N.D. and Faulkner, D.J. (1996). Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716-722.

Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2007; 21: 1-49.

Brantley, S.E., Molinski, T.F. Preston C.M. and DeLong, E.F. (1995). Brominated acetylenic fatty acids from Xestospongia sp., a marine sponge-bacteria association. Tetrahedron 51, 7667-7672.

Brastianos, H.C., Vottero, E., Patrick, B.O., Van Soest, R., Matainaho, T., Mauk, A.G. and Andersen, R.J. (2006). Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. Journal of the American Chemical Society, 128(50), 16046-16047.

Cerqueira, F., Watanadilok, R., Sonchaeng, P., Kijjoa, A., Pinto, M., van Ufford, H.Q., Kroes, B., Beukelman, C. and Nascimento, M.S.J. (2003). Clionasterol: a potent inhibitor of complement component C1. Planta Med. 69, 171-174

Cheng, L.S., de Voogd, N. and Siang T.K. (2008). A Guide to Sponges of Singapore. Singapore Science Centre. pp 173.

Davidson, B.S. (1992). Renieramycin G, a new alkaloid from the sponge Xestospongia caycedoi. Tetrahedron Letters, 33(26), 3721-3724.

De Almeida Leone, P., Carroll, A.R., Towerzey, L., King, G., McArdle, B.M., Kern, G., Fisher, S., Hooper, J.N. and Quinn, R.J. (2008). Exiguaquinol: a novel pentacyclic hydroquinone from Neopetrosia exigua that inhibits Helicobacter pylori MurI. Organic Letters, 10(12), 2585-2588.

Ebada, S.S., Edrada-Ebel, R., Lin, W. and Proksch, P. (2008). Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nature Protocols, 3(12), 1820-1831

Edrada, R.A., Heubes, M., Brauers, G., Wray, V., Berg, A., Grafe, U., Wohlfarth, M., Muhlbacher, J., Schaumann, K., Sudarsono, S., Bringmann G. and Proksch, P. (2002). Online analysis of xestodecalactones A-C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. Journal of Natural Products,65(11), 1598-1604.

Faulkner, D.J., Unson, M.D. and Bewley, C.A. (1994). The chemistry of some sponges and their symbionts. Pure Appl Chem, 66(10-11), 1983-1990.

Fenselau, C., Havey, C., Teerakulkittipong, N., Swatkoski, S., Laine, O., and Edwards, N. (2008). Identification of beta-lactamase in antibiotic-resistant Bacillus cereus spores. Applied and Environmental Microbiology, 74(3), 904-906

Galeano, E. and Martinez, A. (2007). Antimicrobial activity of marine sponges from Uraba´ Gulf, Colombian Caribbean region. Journal de Mycologie Me´dicale 17: 21-24

Garson, M.J., Thompson, J.E. Larsen, R.M. Battershill, C.N. Murphy P.T. and Bergquist, P.R. (1992). Terpenes in sponge cell membranes: cell separation and membrane fractionation studies with the tropical marine sponge Amphimedon sp. Lipids 27, 378-388.

Hooper, J.N.A., Kennedy, J.A. and van Soest, R.W.M. (2000). Annotated Checklist of Sponges (Porifera) of the South China Sea region. The raffles bulletin of zoology 8, 125-207

Houssen, W.E. and Jaspars, M. (2005). Isolation of marine natural products. In: Sarker SD, Latif Z, Gray AI, editors. Natural products isolation. New Jersey: Humana Press Inc.

Iwagawa, T., Kaneko, M., Okamura, H., Nakatani, M., Van Soest, R.W. and Shiro, M. (2000). A new quinolizidine alkaloid from the Papua New Guinean sponge Xestospongia exigua. Journal of Natural Products, 63(9), 1310-1311.

Jimenez, C. and Crews, P. (1991). Novel marine sponge derived amino acids 13. Additional psammaplin derivatives from Psammaplysilla purpurea. Tetrahedron, 47(12-13), 2097-2102.

Kiska, D.L. (1998). In vitro testing of antimicrobial agents. Seminars in Pediatric Infectious Diseases 9, 281–291.

Kobayashi, J. and Ishibashi, M. (1993). Bioactive metabolites from symbiotic marine microorganisms. Chem Rev 93, 1753-1769

Koehn, F.E. (2008). High impact technologies for natural products screening. Progress in drug research, 65(175), 177-210.

Lakshmi, V., Mishra, S.K., Srivastava, S., Chaturvedi, A., Srivastava, M.N. and Shukl, P.K. (2010). Antifungal activity of marine sponge Haliclona exigua (Krikpatrick). Journal de Mycologie Médicale 20, 31-35

Laport, M.S., Santos, O.C.S. and Muricy, G. (2009). Marine sponges: potential sources of new antimicrobial drugs. Current Pharmaceutical Biotechnology 10(1), 86-105

Li, Y., Qin, S., Guo, Y.-W., Gu, Y.-C., and Van Soest, R.W.M. (2011). 9?-Epi-3?,3'?-dimethylxestospongin C, a new macrocyclic diamine alkaloid from the Hainan sponge Neopetrosia exigua. Planta Medica, 77(2), 179-181.

Lin, W.H., Zheng, F.U., Li, J. and Proksch, P. (2001). Novel Chromone Derivatives from Marine Fungus Aspergillus versicolor Isolated from the Sponge Xestospongia exigua. Chinese Chemical Letters 12(3), 235-238

Lindquist, N., Barber, P.H., and Weisz, J.B. (2005). Episymbiotic microbes as food and defence for marine isopods: unique symbioses in a hostile environment. Proceedings of the Royal Society B Biological Sciences 272(1569), 1209-1216.

Molinski, T.F. (1993). Marine pyridoacridine alkaloids: structure, synthesis, and biological chemistry. Chemical Reviews, 93, 1825-1838.

Montalvo, N.F., Mohamed, N.M., Enticknap, J.J., and Hill, R.T. (2005). Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek, 87(1), 29-36.

Nakagawa, M., and Endo, M. (1984). Structures of xestospongin A, B, C and D, novel vasodilative compounds from marine sponge, Xestospongia exigua. Tetrahedron Letters, 25(30), 3227-3230.

Orabi, K.Y., El Sayed, K.A., Hamann, M.T., Dunbar, D.C., Al-Said, M.S., Higa, T. and Kelly, M. (2002). Araguspongines K and L, new bioactive bis-1-oxaquinolizidine N-oxide alkaloids from Red Sea specimens of Xestospongia exigua. Journal of Natural Products, 65(12), 1782-1785.

Othman, M., Loh, H.S., Wiart, C., Khoo, T.J., Lim, K.H. and Ting, K.N. (2011). Optimal methods for evaluating antimicrobial activities from plant extracts. Journal of Microbiological Methods, 84(2), 161-166

Pankey, G.A. and Sabath, L.D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clinical Infectious Diseases 38(6), 864-870.

Patton, T., Barrett, J., Brennan, J. and Moran, N. (2006). Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. Journal of Microbiological Methods 64, 84-95.

Pomponi, S.A. and Willoughby, R. (1994). Sponge cell culture for production of bioactive metabolites. In Van Soest, R. W. M., T. M. G. Van Kempen & J. C. Braekman (eds), Sponges in Time and Space. A. A. Balkema, Rotterdam, 395-400.

Riguera R. (1997). Isolating bioactive compounds from marine organisms. Journal of Marine Biotechnology 5, 187–193

Roll, D.M., Scheuer, P.J., Matsumoto, G.K., and Clardy, J. (1983). Halenaquinone. a pentacyclic polyketide from a marine sponge. Journal of the American Chemical Society, 105(19), 6177-6178.

Rufián-Henares, J.A. and Morales, F.J. (2008). Microtiter plate-based assay for screening antimicrobial activity of melanoidins against E. coli and S. aureus. Food Chemistry, 111(4), 1069-1074

Safaeian, S., Hosseini, H., Asadolah, A.A.P. and Farmohamadi, S. (2009). Antimicrobial activity of marine sponge extracts of offshore zone from Nay Band Bay, Iran. Journal de Mycologie Médicale 19, 11-16

Sanglard, D., Coste, A., & Ferrari, S. (2009). Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Research, 9(7), 1029-1050.

Saz, A.K. (1970). An introspective view of penicillinase. J. Cell. Physiol. 76, 397-404

Shimizu, Y. (1985). Bioactive marine natural products, with emphasis on handling of water-soluble compounds. J. Nat. Prod. 48, 223–235.

Shimizu, Y. (1998) Purification of water-soluble natural products, in Methods in Biotechnology, vol. 4: Natural Products Isolation (Cannell, R. J. P., ed.), Humana, Totowa, NJ, pp. 329–341.

Sneader W. (2005). Drug discovery: a history. Chichester: John Wiley & Sons.

Thakur, N.L. and Anil, A.C. (2000). Antibacterial activity of the sponge Ircinia ramosa: importance of its surface associated bacteria. J Chem Ecol 26, 57-71

Thomas, T.R.A., Kavlekar, D.P., and LokaBharathi, P.A. (2010). Marine Drugs from Sponge Microbe Association-A Review. Marine Drugs 8(4), 1417-1468.

Torres, Y.R., Berlink, R.G.S., Nascimento, G.G.F., Fortier, S.C., Pessoa, C. and de Moraes, M.O. (2002). Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon 40, 885–891.

Unson, M.D. and Faulkner, D.J. (1993). Cyanobacterial symbionts biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49, 349-353.

Unson, M.D., Holland, N.D. and Faulkner, D.J. (1994). A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1-11.

Vacelet, J. and Donadey, C. (1977). Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Ecol., 30, 301-314.

Wei, X., Rodr?´guez, A.D., Wang, Y. and Franzblau, S.G. (2007). Novel ring B abeo-sterols as growth inhibitors of Mycobacterium tuberculosis isolated from a Caribbean Sea sponge, Svenzea zeai. Tetrahedron Letters 48, 8851-8854.

Willenz, P. and Hartman, W.D. (1989). Micromorphology and ultrastructure of Caribbean sclerosponges. I. Mar. Biol., 103, 387-402.

Williams, D.E., Craig, K.S., Patrick, B., McHardy, L.M., Van Soest, R., Roberge, M. and Andersen, R.J. (2002). Motuporamines, anti-invasion and anti-angiogenic alkaloids from the marine sponge Xestospongia exigua (Kirkpatrick): isolation, structure elucidation, analogue synthesis, and conformational analysis. The Journal of Organic Chemistry, 67(1), 245-258.

Williams, D.E., Lassota, P. and Andersen, R.J. (1998). Motuporamines A?C, Cytotoxic Alkaloids Isolated from the Marine Sponge Xestospongia exigua (Kirkpatrick). J. Org. Chem. 63: 4838.

Wright, A.E. (1998). Isolation of marine natural products, in Methods in Biotechnology, vol. 4: Natural Products Isolation (Cannell, R. J. P., ed.), Humana, Totowa, NJ, pp. 365–408.

Zheng, L., Chen, H., Han, X., Lin, W. and Yan, X. (2005). Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World Journal of Microbiology & Biotechnology 21, 201-206.

Most read articles by the same author(s)